版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
Alternating current (AC) line filters have been widely used to smooth the leftover AC ripples on direct current voltage. Currently available commercial aluminum electrolytic capacitors (AECs) are primarily used for this application. However, the bulky volume and low capacitance of AECs have become incompatible with the rapidly developed intelligent electronic devices and industry dynamics. Supercapacitors with high specific capacitance and AC line-filtering performance could become the next-generation candidates to replace AECs for smoothing leftover AC ripples. Thus, most conventional supercapacitors behave like a resistor and not a capacitor at 120 Hz mainly because complex pore structures of electrode materials prevent the diffusion of electrolyte ions. Various electrode materials have been reported to reveal supercapacitors with AC line-filtering performance; however, the balance of high specific capacitance and an excellent filtering efficiency is a prodigious challenge. This review summarizes recently reported supercapacitors based on different types of electrode materials with AC filtering performance and attempts to develop the relationship between different influencing factors and features of functional materials.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论