咨询与建议

限定检索结果

文献类型

  • 60 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 64 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 理学
    • 54 篇 物理学
    • 11 篇 数学
    • 7 篇 化学
    • 7 篇 天文学
    • 4 篇 地球物理学
    • 3 篇 地质学
    • 3 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 30 篇 工学
    • 10 篇 光学工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 材料科学与工程(可...
    • 6 篇 电气工程
    • 5 篇 信息与通信工程
    • 5 篇 化学工程与技术
    • 4 篇 计算机科学与技术...
    • 4 篇 航空宇航科学与技...
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 冶金工程
    • 1 篇 交通运输工程
    • 1 篇 核科学与技术

主题

  • 5 篇 quantum optics
  • 4 篇 topology
  • 3 篇 quantum simulati...
  • 3 篇 open quantum sys...
  • 3 篇 photons
  • 3 篇 random walks
  • 3 篇 quantum informat...
  • 3 篇 optical quantum ...
  • 2 篇 quantum computin...
  • 2 篇 quantum entangle...
  • 2 篇 hamiltonians
  • 2 篇 quantum informat...
  • 2 篇 plasmonics
  • 2 篇 optical interfer...
  • 2 篇 quantum foundati...
  • 2 篇 quantum theory
  • 2 篇 quantum communic...
  • 2 篇 geometric & topo...
  • 1 篇 time
  • 1 篇 tools

机构

  • 15 篇 shanghai branch ...
  • 14 篇 institute for qu...
  • 12 篇 program in quant...
  • 10 篇 department of ph...
  • 7 篇 program in quant...
  • 7 篇 synergetic innov...
  • 7 篇 state key labora...
  • 7 篇 hefei national l...
  • 6 篇 institute for qu...
  • 6 篇 program in quant...
  • 6 篇 hefei national l...
  • 6 篇 key laboratory o...
  • 6 篇 beijing computat...
  • 6 篇 hefei national l...
  • 6 篇 institute for qu...
  • 5 篇 shanghai branch ...
  • 5 篇 program in quant...
  • 4 篇 state key labora...
  • 4 篇 collaborative in...
  • 3 篇 eötvös universit...

作者

  • 22 篇 barry c. sanders
  • 15 篇 sanders barry c.
  • 7 篇 peng xue
  • 5 篇 xiang zhan
  • 4 篇 zhihao bian
  • 4 篇 wang kunkun
  • 4 篇 zhang wei-wei
  • 4 篇 jian-wei pan
  • 4 篇 xue peng
  • 3 篇 bian zhihao
  • 3 篇 xiao lei
  • 3 篇 qiu xingze
  • 3 篇 kunkun wang
  • 3 篇 zhan xiang
  • 3 篇 xingze qiu
  • 3 篇 wei-wei zhang
  • 3 篇 wei yi
  • 3 篇 yi wei
  • 3 篇 yu-ao chen
  • 2 篇 brown d.d.

语言

  • 61 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Innovation Program for Quantum Science and Technology"
64 条 记 录,以下是41-50 订阅
排序:
Fault-tolerant conversion between adjacent Reed-Muller quantum codes based on gauge fixing
arXiv
收藏 引用
arXiv 2017年
作者: Quan, Dong-Xiao Zhu, Li-Li Pei, Chang-Xing Sanders, Barry C. State Key Laboratory of Integrated Services Networks Xidian University Xi'an Shaanxi710071 China Institute for Quantum Science and Technology University of Calgary ABT2N 1N4 Canada Program in Quantum Information Science Canadian Institute for Advanced Research TorontoONM5G 1Z8 Canada Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei Anhui230026 China Shanghai Branch CAS Center for Excellence Synergetic Innovation Center in Quantum Information and Quantum Physics University of Science and Technology of China Shanghai201315 China
We design forward and backward fault-tolerant conversion circuits, which convert between the Steane code and the 15-qubit Reed-Muller quantum code so as to provide a universal transversal gate set. In our method, only... 详细信息
来源: 评论
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
收藏 引用
Astrophysical Journal, Supplement Series 2023年 第2期267卷 29-29页
作者: Abbott, R. Abe, H. Acernese, F. Ackley, K. Adhicary, S. Adhikari, N. Adhikari, R.X. Adkins, V.K. Adya, V.B. Affeldt, C. Agarwal, D. Agathos, M. Aguiar, O.D. Aiello, L. Ain, A. Ajith, P. Akutsu, T. Albanesi, S. Alfaidi, R.A. Al-Jodah, A. Alléné, C. Allocca, A. Almualla, M. Altin, P.A. Amato, A. Amez-Droz, L. Amorosi, A. Anand, S. Ananyeva, A. Andersen, R. Anderson, S.B. Anderson, W.G. Andia, M. Ando, M. Andrade, T. Andres, N. Andrés-Carcasona, M. Andrić, T. Ansoldi, S. Antelis, J.M. Antier, S. Aoumi, M. Apostolatos, T. Appavuravther, E.Z. Appert, S. Apple, S.K. Arai, K. Araya, A. Araya, M.C. Areeda, J.S. Arène, M. Aritomi, N. Arnaud, N. Arogeti, M. Aronson, S.M. Arun, K.G. Asada, H. Ashton, G. Aso, Y. Assiduo, M. Assis de Souza Melo, S. Aston, S.M. Astone, P. Aubin, F. AultONeal, K. Babak, S. Badalyan, A. Badaracco, F. Badger, C. Bae, S. Bagnasco, S. Bai, Y. Baier, J.G. Baiotti, L. Baird, J. Bajpai, R. Baka, T. Ball, M. Ballardin, G. Ballmer, S.W. Baltus, G. Banagiri, S. Banerjee, B. Bankar, D. Baral, P. Barayoga, J.C. Barber, J. Barish, B.C. Barker, D. Barneo, P. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Barthelmy, S.D. Barton, M.A. Bartos, I. Basak, S. Basalaev, A. Bassiri, R. Basti, A. Bawaj, M. Bayley, J.C. Baylor, A.C. Bazzan, M. Bécsy, B. Bedakihale, V.M. Beirnaert, F. Bejger, M. Bell, A.S. Benedetto, V. Beniwal, D. Benoit, W. Bentley, J.D. Ben Yaala, M. Bera, S. Berbel, M. Bergamin, F. Berger, B.K. Bernuzzi, S. Beroiz, M. Berry, C.P.L. Bersanetti, D. Bertolini, A. Betzwieser, J. Beveridge, D. Bevins, N. Bhandare, R. Bhandari, A.V. Bhardwaj, U. Bhatt, R. Bhattacharjee, D. Bhaumik, S. Bianchi, A. Bilenko, I.A. Bilicki, M. Billingsley, G. Bini, S. Birnholtz, O. Biscans, S. Bischi, M. Biscoveanu, S. Bisht, A. Biswas, B. Bitossi, M. Bizouard, M.-A. Blackburn, J.K. Blair, C.D. Blair, D.G. Blair, R.M. Bobba, F. Bode, N. Boër, M. Bogaert, G. Boileau, G. Boldrini, M. Bolingbroke, G.N. Bonavena, L.D. Bondarescu, R. Bondu, F. Bonilla, E. Bonilla, G.S. Bonnand, R. Booker, P. Bork, R. Boschi, V. Bose, N. LIGO Laboratory California Institute of Technology Pasadena 91125 CA United States Graduate School of Science Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan Dipartimento di Farmacia Università di Salerno Salerno Fisciano I-84084 Italy INFN Sezione di Napoli Napoli I-80126 Italy OzGrav School of Physics & Astronomy Monash University Clayton 3800 VIC Australia The Pennsylvania State University University Park 16802 PA United States University of Wisconsin-Milwaukee Milwaukee 53201 WI United States Louisiana State University Baton Rouge 70803 LA United States OzGrav Australian National University Canberra 0200 ACT Australia Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Hannover D-30167 Germany Leibniz Universität Hannover Hannover D-30167 Germany Inter-University Centre for Astronomy and Astrophysics Pune 411007 India University of Cambridge Cambridge CB2 1TN United Kingdom Instituto Nacional de Pesquisas Espaciais São Paulo São José dos Campos 12227-010 Brazil Cardiff University Cardiff CF24 3AA United Kingdom INFN Sezione di Pisa Pisa I-56127 Italy International Centre for Theoretical Sciences Tata Institute of Fundamental Research Bengaluru 560089 India Gravitational Wave Science Project National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan Advanced Technology Center National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan Dipartimento di Fisica Università degli Studi di Torino Torino I-10125 Italy INFN Sezione di Torino Torino I-10125 Italy SUPA University of Glasgow Glasgow G12 8QQ United Kingdom OzGrav University of Western Australia Crawley 6009 WA Australia Univ. Savoie Mont Blanc CNRS Laboratoire d'Annecy de Physique des Particules - IN2P3 Annecy F-74000 France Università di Napoli “Federico II” Napoli I-80126 Italy University of Minnesota Minneapolis 55455 MN United States M
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3,...
来源: 评论
Relativistic (2,3)-threshold quantum secret sharing
arXiv
收藏 引用
arXiv 2017年
作者: Ahmadi, Mehdi Wu, Ya-Dong Sanders, Barry C. Department of Mathematics and Statistics University of Calgary CalgaryABT2N 1N4 Canada Institute for Quantum Science and Technology University of Calgary ABT2N 1N4 Canada Program in Quantum Information Science Canadian Institute for Advanced ResearchToronto ONM5G 1Z8 Canada Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei Anhui230026 China Shanghai Branch CAS Center for Excellence Synergetic Innovation Center in Quantum Information and Quantum Physics University of Science and Technology of China Shanghai201315 China
In quantum secret sharing protocols, the usual presumption is that the distribution of quantum shares and players' collaboration are both performed inertially. Here we develop a quantum secret sharing protocol tha... 详细信息
来源: 评论
Quantification and manipulation of magic states
arXiv
收藏 引用
arXiv 2017年
作者: Ahmadi, Mehdi Dang, Hoan Bui Gour, Gilad Sanders, Barry C. Department of Mathematics and Statistics University of Calgary CalgaryABT2N 1N4 Canada Institute for Quantum Science and Technology University of Calgary AlbertaT2N 1N4 Canada Program in Quantum Information Science Canadian Institute for Advanced Research TorontoONM5G 1Z8 Canada Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei Anhui230026 China Shanghai Branch CAS Ctr. for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics University of Science and Technology of China Shanghai201315 China
Magic states can be used as a resource to circumvent the restrictions due to stabilizer-preserving operations, and magic-state conversion has not been studied in the single-copy regime thus far. Here we solve the ques... 详细信息
来源: 评论
Entanglement-enhanced quantum metrology in a noisy environment
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Kunkun Wang, Xiaoping Zhan, Xiang Bian, Zhihao Li, Jian Sanders, Barry C. Xue, Peng Department of Physics Southeast University Nanjing211189 China Beijing Computational Science Research Center Beijing100084 China Synergetic Innovation Center in Quantum Information and Quantum Physics University of Science and Technology of China CAS Hefei230026 China Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China CAS Hefei230026 China Institute for Quantum Science and Technology University of Calgary ABT2N 1N4 Canada Program in Quantum Information Science Canadian Institute for Advanced Research TorontoONM5G 1M1 Canada State Key Laboratory of Precision Spectroscopy East China Normal University Shanghai200062 China
quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically it is vulnerable to imperfections such as decoherence. Here, we demonstrate quantum metrology for n... 详细信息
来源: 评论
Decomposition of split-step quantum walks for simulating Majorana modes and edge states
arXiv
收藏 引用
arXiv 2017年
作者: Zhang, Wei-Wei Goyal, Sandeep K. Simon, Christoph Sanders, Barry C. Hefei National Laboratory for Physical Sciences Microscale Department of Modern Physics University of Science and Technology of China Hefei Anhui230026 China Institute for Quantum Science and Technology Department of Physics and Astronomy University of Calgary T2N1N4 Canada State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications Beijing100876 China Department of Physical Sciences Indian Institute of Science Education and Research Sector 81 SAS Nagar Mohali Punjab140306 India Shanghai Branch CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics University of Science and Technology of China Shanghai201315 China Program in Quantum Information Science Canadian Institute for Advanced Research TorontoONM5G1Z8 Canada
We construct a decomposition procedure for converting split-step quantum walks into ordinary quantum walks with alternating coins, and we show that this decomposition enables a feasible linear optical realization of s...
来源: 评论
Search for Continuous Gravitational Waves from Known Pulsars in the First Part of the Fourth LIGO-Virgo-KAGRA Observing Run
收藏 引用
Astrophysical Journal 2025年 第2期983卷 99-99页
作者: Abac, A.G. Abbott, R. Abouelfettouh, I. Acernese, F. Ackley, K. Adhicary, S. Adhikari, N. Adhikari, R.X. Adkins, V.K. Agarwal, D. Agathos, M. Aghaei Abchouyeh, M. Aguiar, O.D. Aguilar, I. Aiello, L. Ain, A. Ajith, P. Akutsu, T. Albanesi, S. Alfaidi, R.A. Al-Jodah, A. Alléné, C. Allocca, A. Al-Shammari, S. Altin, P.A. Alvarez-Lopez, S. Amato, A. Amez-Droz, L. Amorosi, A. Amra, C. Ananyeva, A. Anderson, S.B. Anderson, W.G. Andia, M. Ando, M. Andrade, T. Andres, N. Andrés-Carcasona, M. Andrić, T. Anglin, J. Ansoldi, S. Antelis, J.M. Antier, S. Aoumi, M. Appavuravther, E.Z. Appert, S. Apple, S.K. Arai, K. Araya, A. Araya, M.C. Areeda, J.S. Argianas, L. Aritomi, N. Armato, F. Arnaud, N. Arogeti, M. Aronson, S.M. Ashton, G. Aso, Y. Assiduo, M. Assis de Souza Melo, S. Aston, S.M. Astone, P. Attadio, F. Aubin, F. AultONeal, K. Avallone, G. Babak, S. Badaracco, F. Badger, C. Bae, S. Bagnasco, S. Bagui, E. Baier, J.G. Baiotti, L. Bajpai, R. Baka, T. Ball, M. Ballardin, G. Ballmer, S.W. Banagiri, S. Banerjee, B. Bankar, D. Baral, P. Barayoga, J.C. Barish, B.C. Barker, D. Barneo, P. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartoletti, A.M. Barton, M.A. Bartos, I. Basak, S. Basalaev, A. Bassiri, R. Basti, A. Bates, D.E. Bawaj, M. Baxi, P. Bayley, J.C. Baylor, A.C. Baynard, P.A. Bazzan, M. Bedakihale, V.M. Beirnaert, F. Bejger, M. Belardinelli, D. Bell, A.S. Benedetto, V. Benoit, W. Bentley, J.D. Ben Yaala, M. Bera, S. Berbel, M. Bergamin, F. Berger, B.K. Bernuzzi, S. Beroiz, M. Bersanetti, D. Bertolini, A. Betzwieser, J. Beveridge, D. Bevins, N. Bhandare, R. Bhardwaj, U. Bhatt, R. Bhattacharjee, D. Bhaumik, S. Bhowmick, S. Bianchi, A. Bilenko, I.A. Billingsley, G. Binetti, A. Bini, S. Birnholtz, O. Biscoveanu, S. Bisht, A. Bitossi, M. Bizouard, M.-A. Blackburn, J.K. Blagg, L.A. Blair, C.D. Blair, D.G. Bobba, F. Bode, N. Boileau, G. Boldrini, M. Bolingbroke, G.N. Bolliand, A. Bonavena, L.D. Bondarescu, R. Bondu, F. Bonilla, E. Bonilla, M.S. Bonino, A. Bonnand, R. Booker, P. Borchers, A. Boschi, V. Bose, S. Boss Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Potsdam D-14476 Germany LIGO Laboratory California Institute of Technology Pasadena 91125 CA United States LIGO Hanford Observatory Richland 99352 WA United States Dipartimento di Farmacia Università di Salerno Fisciano Salerno I-84084 Italy INFN Sezione di Napoli Napoli I-80126 Italy University of Warwick Coventry CV 47AL United Kingdom The Pennsylvania State University University Park 16802 PA United States University of Wisconsin-Milwaukee Milwaukee 53201 WI United States Louisiana State University Baton Rouge 70803 LA United States Université Catholique de Louvain Louvain-la-Neuve B-1348 Belgium Inter-University Centre for Astronomy and Astrophysics Pune 411007 India Queen Mary University of London London E1 4NS United Kingdom Department of Physics and Astronomy Sejong University 209 Neungdong-ro Gwangjin-gu Seoul 143-747 South Korea Instituto Nacional de Pesquisas Espaciais São José dos Campos São Paulo 12227-010 Brazil Stanford University Stanford 94305 CA United States Università di Roma Tor Vergata Roma I-00133 Italy INFN Sezione di Roma Tor Vergata Roma I-00133 Italy Cardiff University Cardiff CF24 3AA United Kingdom Universiteit Antwerpen Antwerpen 2000 Belgium International Centre for Theoretical Sciences Tata Institute of Fundamental Research Bengaluru 560089 India Gravitational Wave Science Project National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan Advanced Technology Center National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan INFN Sezione di Torino Torino I-10125 Italy Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität Jena Jena D-07743 Germany Dipartimento di Fisica Università degli Studi di Torino Torino I-10125 Italy SUPA University of Glasgow Glasgow G12 8QQ United Kingdom OzGrav University of Western Australia Crawley 6009 WA
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs fr...
来源: 评论
Magnetism and the spin state in cubic perovskite CaCoO3 synthesized under high pressure
收藏 引用
Physical Review Materials 2017年 第2期1卷 024406-024406页
作者: Hailiang Xia Jianhong Dai Yuanji Xu Yunyu Yin Xiao Wang Zhehong Liu Min Liu Michael A. McGuire Xiang Li Zongyao Li Changqing Jin Yifeng Yang Jianshi Zhou Youwen Long Beijng National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China School of Physical Sciences University of Chinese Academy of Sciences Beijing 100190 China Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA Materials Science and Engineering Program Department of Mechanical Engineering University of Texas Austin Texas 78712 USA Collaborative Innovation Center of Quantum Matter Beijing 100190 China
Cubic SrCoO3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal p... 详细信息
来源: 评论
Detecting topological transitions in two dimensions by Hamiltonian evolution
arXiv
收藏 引用
arXiv 2017年
作者: Zhang, Wei-Wei Sanders, Barry C. Apers, Simon Goyal, Sandeep K. Feder, David L. State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications Beijing100876 China Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei Anhui230026 China Institute for Quantum Science and Technology Department of Physics and Astronomy University of Calgary CalgaryABT2N 1N4 Canada Centre for Engineered Quantum Systems School of Physics University of Sydney Sydney Australia Shanghai Branch CAS Center for Excellence Synergetic Innovation Center in Quantum Information and Quantum Physics University of Science and Technology of China Shanghai201315 China Program in Quantum Information Science Canadian Institute for Advanced Research TorontoONM5G 1M1 Canada SYSTeMS Ghent University IR08 Technologiepark 913 ZwijnaardeB-9052 Belgium Indian Institute of Science Education and Research Mohali Punjab140306 India
We show that the evolution of two-component particles governed by a two-dimensional spin-orbit lattice Hamiltonian can reveal transitions between topological phases. A kink in the mean width of the particle distributi... 详细信息
来源: 评论
Strong coherent light amplification with double electro-magnetically induced transparency coherences
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Dan Liu, Chao Xiao, Changshun Zhang, Junxiang Alotaibi, Hessa M.M. Sanders, Barry C. Wang, Li-Gang Zhu, Shiyao Department of Physics Zhejiang University Hangzhou310027 China College of Physics and Electronic Engineering Shanxi University Taiyuan030006 China Collaborative Innovation Center of Extreme Optics Shanxi University Taiyuan030006 China Public Authority for Applied Education and Training P.O. Box 23167 Safat13092 Hefei National Laboratory for Physical Sciences Microscale University of Science and Technology of China Hefei230026 China Shanghai Branch CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics University of Science and Technology of China Shanghai201315 China Institute for Quantum Science and Technology University of Calgary AlbertaT2N 1N4 Canada Program in Quantum Information Science Canadian Institute for Advanced Research TorontoONM5G 1M1 Canada Beijing Computational Science Research Center Beijing100084 China
We experimentally demonstrate coherent amplification of probe field in a tripod-type atoms driven by strong coupling, signal and weak probe fields. We suppress linear and nonlin-ear atomic absorptions for resonant and... 详细信息
来源: 评论