咨询与建议

限定检索结果

文献类型

  • 23 篇 会议
  • 16 篇 期刊文献

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 25 篇 工学
    • 13 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 7 篇 光学工程
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 化学工程与技术
    • 3 篇 冶金工程
    • 3 篇 动力工程及工程热...
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 纺织科学与工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 核科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 21 篇 理学
    • 14 篇 物理学
    • 9 篇 数学
    • 8 篇 地球物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
    • 1 篇 大气科学
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 2 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 4 篇 germanium alloys
  • 3 篇 gamma rays
  • 2 篇 data mining
  • 2 篇 computational mo...
  • 2 篇 semantics
  • 2 篇 adaptation model...
  • 2 篇 convolutional ne...
  • 1 篇 sounding apparat...
  • 1 篇 conferences
  • 1 篇 tuning
  • 1 篇 viterbi algorith...
  • 1 篇 elliptic curve c...
  • 1 篇 sparse matrices
  • 1 篇 grammar
  • 1 篇 computer archite...
  • 1 篇 computational ef...
  • 1 篇 big data
  • 1 篇 active galactic ...
  • 1 篇 feedback
  • 1 篇 natural language...

机构

  • 8 篇 zeuthen d-15738
  • 7 篇 infn magic group...
  • 7 篇 infn magic group...
  • 7 篇 dipartimento di ...
  • 7 篇 zagreb 10000 cro...
  • 7 篇 università di si...
  • 7 篇 centro de invest...
  • 7 篇 universitat de b...
  • 7 篇 university of lo...
  • 7 篇 rome
  • 7 篇 eth zürich züric...
  • 7 篇 universität würz...
  • 7 篇 technische unive...
  • 7 篇 urca rj rio de j...
  • 7 篇 croatian magic g...
  • 7 篇 the university o...
  • 7 篇 università di pi...
  • 7 篇 japanese magic g...
  • 7 篇 università di ud...
  • 7 篇 inst. for nucl. ...

作者

  • 8 篇 barrio j.a.
  • 8 篇 dorner d.
  • 8 篇 elsaesser d.
  • 8 篇 biland a.
  • 8 篇 lindfors e.
  • 7 篇 acciari v.a.
  • 7 篇 mazin d.
  • 7 篇 berti a.
  • 7 篇 green d.
  • 7 篇 martínez m.
  • 7 篇 colombo e.
  • 7 篇 mannheim k.
  • 7 篇 asano k.
  • 7 篇 loporchio s.
  • 7 篇 kerszberg d.
  • 7 篇 ceribella g.
  • 7 篇 mirzoyan r.
  • 7 篇 carosi r.
  • 7 篇 green j.g.
  • 7 篇 lópez-oramas a.

语言

  • 38 篇 英文
  • 1 篇 其他
检索条件"机构=Inst. of Data Science and Engineering"
39 条 记 录,以下是1-10 订阅
排序:
P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving
P-YOLOv8: Efficient and Accurate Real-Time Detection of Dist...
收藏 引用
2024 IEEE High Performance Extreme Computing Conference, HPEC 2024
作者: Elshamy, Mohamed R. Emara, Heba M. Shoaib, Mohamed R. Badawy, Abdel-Hameed A. Klipsch School of ECE New Mexico State University Las CrucesNM88003 United States Pyramids Higher Inst. for Engineering & Technology Dept. of Electronics and Communications Engineering Egypt College of Computing and. Data Science Nanyang Technological University Singapore
Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide. This study addresses the urgent need for efficient and real-time machine learning models to detect distracted dri... 详细信息
来源: 评论
A Fine-Grained Attribute Pre-Labeling Method Based on Label Dependency and Feature Similarity Dynamics
A Fine-Grained Attribute Pre-Labeling Method Based on Label ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Hao-Chiang Shao Yu-Hsien Lin Chia-Wen Lin Inst. Data Science and Information Computing National Chung Hsing University Taiwan Dept. Electrical Engineering National Tsing Hua University Taiwan
In this paper, we proposed a fine-grained attribute pre-labeling method based on the multi-label recovery techniques. Given a fine-grained image dataset with overlooked attributes in its annotation vectors, our method...
来源: 评论
Logging Multi-Component Supply Chain Production in Blockchain  2021
Logging Multi-Component Supply Chain Production in Blockchai...
收藏 引用
4th International Conference on Computers in Management and Business, ICCMB 2021
作者: Madhwal, Yash Chistiakov, Ivan Yanovich, Yury Faculty of Computer Science National Research University Higher School of Economics Russia Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Russia Center for Computational and Data-Intensive Science and Engineering Skolkovo Inst. of Sci. and Technol. and Lab. of Data Mining and Predictive Modelling Inst. for Info. Transmiss. Prob. Russia
The supply chain is a thriving industry where numerous parties have different interests. Subsequently, the immense volume of data produced is difficult to audit. Some information can be lost or intentionally distorted... 详细信息
来源: 评论
Chinese Emergency Event Extraction Based on Contrastive Learning with Event Semantic Features  19
Chinese Emergency Event Extraction Based on Contrastive Lear...
收藏 引用
19th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2023
作者: Sheng, Xinyi Gu, Jinguang Yan, Youcheng Xu, Fangfang Wuhan University of Science and Technology College of Computer Science and Technology Wuhan430065 China Institute of Big Data Science and Engineering Wuhan University of Science and Technology Wuhan430065 China The Key Lab. of Rich-Media Knowledge Org. and Serv. of Digit. Publ. Content Inst. of Sci. and Tech. Info. of China Beijing100038 China
Extracting emergency events from a large amount of unstructured information is essential for improving early warning and emergency response. Existing event extraction methods for specialist fields often rely on well-d... 详细信息
来源: 评论
SPENT+: A Category- And Region-aware Successive POI Recommendation Model
SPENT+: A Category- And Region-aware Successive POI Recommen...
收藏 引用
22nd Asia-Pacific Network Operations and Management Symposium, APNOMS 2021
作者: Lai, Hsu-Chao Lu, Yi-Shu Wang, Mu-Fan Chen, Yi-Cheng Shih, Wen-Yueh Huang, Jiun-Long Inst. of Computer Science and Engineering National Yang Ming Chiao Tung University Taiwan National Central University Department of Information Management Taiwan Inst. of Data Science and Engineering National Yang Ming Chiao Tung University Taiwan
To facilitate successive Point-of-Interests (POI) recommendation, the categories of POIs and the regions where POIs are located are seldom considered in existing models. In view of this, we extend a state-of-the-art m... 详细信息
来源: 评论
Comparison between Grad-CAM and EigenCAM on YOLOv5 detection model
Comparison between Grad-CAM and EigenCAM on YOLOv5 detection...
收藏 引用
2022 International Symposium on Electronics and Smart Devices, ISESD 2022
作者: Rahman, Arief Nur Andriana, Dian MacHbub, Carmadi Bandung Inst. of Technol. Res. Center for Telecommunications National Research and Innovation Agency School of Electrical Engineering and Informatics Bandung Indonesia Telkom University Research Center for Data and Information Science National Research and Innovation Agency School of Computing Bandung Indonesia
This paper presents a comparison between Grad-CAM and EigenCAM methods on the YOLOv5 detection model. Explainable Artificial Intelligence (XAI) is a tool to understand and interpret machine learning models. XAI is use... 详细信息
来源: 评论
P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving
arXiv
收藏 引用
arXiv 2024年
作者: Elshamy, Mohamed R. Emara, Heba M. Shoaib, Mohamed R. Badawy, Abdel-Hameed A. Klipsch School of ECE New Mexico State University Las CrucesNM88003 United States Dept. of Electronics and Communications Engineering Pyramids Higher Inst. for Engineering & Technology Egypt College of Computing and Data Science Nanyang Technological University Singapore
Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide. This study addresses the urgent need for efficient and real-time machine learning models to detect distracted dri... 详细信息
来源: 评论
p-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving
p-YOLOv8: Efficient and Accurate Real-Time Detection of Dist...
收藏 引用
IEEE Conference on High Performance Extreme Computing (HPEC)
作者: Mohamed R. Elshamy Heba M. Emara Mohamed R. Shoaib Abdel-Hameed A. Badawy Klipsch School of ECE New Mexico State University Las Cruces NM United States Dept. of Electronics and Communications Engineering Pyramids Higher Inst. for Engineering & Technology Egypt College of Computing and. Data Science Nanyang Technological University Singapore
Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide. This study addresses the urgent need for efficient and real-time machine learning models to detect distracted dri... 详细信息
来源: 评论
Private algorithms for stochastic saddle points and variational inequalities: beyond euclidean geometry  24
Private algorithms for stochastic saddle points and variatio...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Raef Bassily Cristóbal Guzmán Michael Menart Department of Computer Science & Engineering Translational Data Analytics Institute (TDAI) The Ohio State University Inst. for Mathematical and Comput. Eng. Fac. de Matemáticas and Esc. de Ingeniería Pontificia Universidad Católica de Chile Department of Computer Science & Engineering The Ohio State University and Department of Computer Science University of Toronto Vector Institute
In this work, we conduct a systematic study of stochastic saddle point problems (SSP) and stochastic variational inequalities (SVI) under the constraint of (ε, δ)-differential privacy (DP) in both Euclidean and non-...
来源: 评论
Public-data assisted private stochastic optimization: power and limitations  24
Public-data assisted private stochastic optimization: power ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Enayat Ullah Michael Menart Raef Bassily Cristóbal Guzmán Raman Arora Meta Department of Computer Science & Engineering The Ohio State University and Department of Computer Science University of Toronto Vector Institute Department of Computer Science & Engineering Translational Data Analytics Institute (TDAI) The Ohio State University Inst. for Mathematical and Comput. Eng. Fac. de Matemáticas and Esc. de Ingeniería Pontificia Universidad Católica de Chile Department of Computer Science Johns Hopkins University
We study the limits and capability of public-data assisted differentially private (PA-DP) algorithms. Specifically, we focus on the problem of stochastic convex optimization (SCO) with either labeled or unlabeled publ...
来源: 评论