咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 45 篇 会议
  • 1 册 图书

馆藏范围

  • 119 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 工学
    • 66 篇 计算机科学与技术...
    • 55 篇 软件工程
    • 23 篇 信息与通信工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 机械工程
    • 13 篇 光学工程
    • 11 篇 电气工程
    • 11 篇 控制科学与工程
    • 7 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 土木工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物工程
    • 3 篇 测绘科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 化学工程与技术
  • 66 篇 理学
    • 52 篇 数学
    • 22 篇 物理学
    • 14 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 3 篇 天文学
    • 3 篇 系统科学
    • 2 篇 化学
  • 13 篇 管理学
    • 8 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 临床医学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 10 篇 image processing
  • 8 篇 image segmentati...
  • 6 篇 pattern recognit...
  • 5 篇 image
  • 4 篇 analysis
  • 4 篇 detection
  • 4 篇 feature extracti...
  • 4 篇 algorithm
  • 4 篇 object recogniti...
  • 3 篇 markov
  • 3 篇 segmentation
  • 3 篇 support vector m...
  • 3 篇 information
  • 3 篇 target tracking
  • 3 篇 edge
  • 3 篇 tracking
  • 3 篇 watershed
  • 3 篇 car-following mo...
  • 3 篇 estimation
  • 3 篇 k-means

机构

  • 30 篇 inst. of image p...
  • 7 篇 state key lab. o...
  • 5 篇 inst. of image p...
  • 4 篇 inst. of image p...
  • 4 篇 inst. of image p...
  • 3 篇 inst. of image p...
  • 3 篇 lab. for image p...
  • 3 篇 inst. of pattern...
  • 3 篇 inst. of image p...
  • 2 篇 state education ...
  • 2 篇 inst. of image p...
  • 2 篇 school of comput...
  • 2 篇 inst. of pattern...
  • 2 篇 inst. for patter...
  • 2 篇 state key lab. o...
  • 2 篇 inst.of image pr...
  • 2 篇 inst. of image p...
  • 2 篇 inst.of image pr...
  • 2 篇 inst. for patter...
  • 2 篇 inst. of image p...

作者

  • 22 篇 yang jie
  • 8 篇 shi peng-fei
  • 8 篇 cao zhiguo
  • 8 篇 liu jian
  • 7 篇 liu yun-cai
  • 5 篇 jie yang
  • 5 篇 wang yuehuan
  • 5 篇 tian jin-wen
  • 4 篇 施鹏飞
  • 4 篇 刘允才
  • 4 篇 zhang tian-xu
  • 4 篇 zhang tianxu
  • 4 篇 tian jinwen
  • 3 篇 liu xiao-jun
  • 3 篇 zheng yi
  • 3 篇 gu irene yu-hua
  • 3 篇 yao li-xiu
  • 3 篇 li zhi-peng
  • 3 篇 hu han-ping
  • 2 篇 yun yixiao

语言

  • 82 篇 英文
  • 37 篇 中文
检索条件"机构=Inst. of Image Processing and Pattern Recognition"
119 条 记 录,以下是11-20 订阅
排序:
Finding minimal rough set redacts with particle swarm optimization
Finding minimal rough set redacts with particle swarm optimi...
收藏 引用
High-Power Diode Laser Technology and Applications IV
作者: Wang, Xiangyang Yang, Jie Peng, Ningsong Teng, Xiaolong Inst. of Image Processing and Pattern Recognition Jiaotong University Shanghai 200030 China
We propose a new algorithm to find minimal rough set reducts by using Particle Swarm Optimization (PSO). Like Genetic Algorithm, PSO is also a type of evolutionary algorithm. But compared with GA, PSO does not need co... 详细信息
来源: 评论
Dominant Correlogram Based Particle Filter Tracking
收藏 引用
Journal of Shanghai Jiaotong university(Science) 2005年 第1期10卷 12-15页
作者: 毛燕芬 施鹏飞 Inst.of Image Processing & Pattern Recognition Shanghai Jiaotong Univ. Shanghai 200030 China
A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This pape... 详细信息
来源: 评论
Research on a novel restoration algorithm of turbulence-degraded images with alternant iterations
收藏 引用
Journal of Systems Engineering and Electronics 2006年 第3期17卷 477-482页
作者: Liu Chunsheng Hong Hanyu Zhang Tianxu Inst. for Pattern Recognition and AI State Key Laboratory of Image Processing and Intelligent Control Huazhong Univ. of Science and Technology Wuhan 430074 P. R. China
A new restoration algorithm based on double loops and alternant iterations is proposed to restore the object image effectively from a few frames of turbulence-degraded images, Based on the double loops, the iterative ... 详细信息
来源: 评论
Neural Networks in image Pyramids
Neural Networks in Image Pyramids
收藏 引用
1992 International Joint Conference on Neural Networks, IJCNN 1992
作者: Bischof, Horst Pinz, Axel J. Inst. for Automation Dept. for Pattern Recognition and Image Processing Technical University Vienna Austria
We present a novel neural network model for visual information processing. The model uses a hierarchical network with local connectivity (image pyramid) as a stem network. This network generates hypotheses about the e... 详细信息
来源: 评论
Crowd Scene Analysis: Crowd Counting using MCNN based on Self-Supervised training with Attention Mechanism  25
Crowd Scene Analysis: Crowd Counting using MCNN based on Sel...
收藏 引用
25th International Multi Topic Conference, INMIC 2023
作者: Asif, Muhammad Junaid Asad, Mujtaba Imran, Shaheer University of Central Punjab Faculty of It & Cs Lahore Pakistan Inst. of Image Processing and Pattern Recognition Seiee Sjtu Shanghai China
Fully-supervised learning requires expensive and laborious annotations of labeled data for crowd-counting tasks. To alleviate this burden, it is desirable to explore methods that reduce the need for extensive labeling... 详细信息
来源: 评论
An object tracking algorithmbased on occlusion mesh model
An object tracking algorithmbased on occlusion mesh model
收藏 引用
Proceedings of 2002 International Conference on Machine Learning and Cybernetics
作者: Zhao, Jian-Wei Wang, Peng Liu, Chong-Qing Inst. Image Proc Pattern Recognition Shanghai Jiaotong University Shanghai China
The concept of occlusion mesh model is introduced. A novel object tracking algorithm based on occlusion mesh model is proposed. A modified occlusion detection method is considered to improve the detection accuracy. Me... 详细信息
来源: 评论
A Model of Federated Evidence Fusion for Real-time Urban Traffic State Estimation
收藏 引用
Journal of Shanghai Jiaotong university(Science) 2007年 第6期12卷 793-798,804页
作者: 孔庆杰 刘允才 Inst. of Image Processing and Pattern Recognition Shanghai Jiaotong Univ.
In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The mod... 详细信息
来源: 评论
Multi-resolution LOD volume rendering in medicine
收藏 引用
5th International Conference on Computational Science - ICCS 2005
作者: Xie, Kai Yang, Jie Zhu, Yue Min Inst. of Image Processing and Pattern Recognition Shanghai Jiaotong Univ. 200030 Shanghai China CREATIS CNRS INSERM 69621 Villeurbanne France
This paper presents a level of detail (LOD) selection algorithm for multi-resolution volume rendering using 3D texture mapping. It uses an adaptive scheme that renders the volume in a region-of-interest at a high reso... 详细信息
来源: 评论
Unsupervised multiscale image segmentation using wavelet domain hidden Markov tree
Unsupervised multiscale image segmentation using wavelet dom...
收藏 引用
8th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2004
作者: Qing, Xu Jie, Yang Siyi, Ding Inst. of Image Processing and Pattern Recognition Shanghai Jiao tong Univ Shanghai Box251 1954 Huashan Road Shanghai China
In this paper, we have improved the supervised multi-scale texture segmentation (HMTseg), where wavelet domain hidden Markov model is applied to capture the texture feature and a contextual model is employed to fuse m... 详细信息
来源: 评论
image ANALYSIS BASED ON EDGE DETECTION TECHNIQUES
收藏 引用
Journal of Shanghai Jiaotong university(Science) 2002年 第2期7卷 198-203页
作者: NASSIR H.SALMAN(纳瑟) LIU Chong-qing(刘重庆) Inst. of Image Processing & Pattern Recognition Shanghai Jiaotong Univ. Shanghai 200030 China Inst. of Image Processing & Pattern Recognition Shanghai Jiaotong Univ. Shanghai 200030 China
A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies ... 详细信息
来源: 评论