咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 工学
    • 66 篇 计算机科学与技术...
    • 55 篇 软件工程
    • 23 篇 信息与通信工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 机械工程
    • 13 篇 光学工程
    • 11 篇 电气工程
    • 11 篇 控制科学与工程
    • 7 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 土木工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物工程
    • 3 篇 测绘科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 化学工程与技术
  • 66 篇 理学
    • 52 篇 数学
    • 22 篇 物理学
    • 14 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 3 篇 天文学
    • 3 篇 系统科学
    • 2 篇 化学
  • 13 篇 管理学
    • 8 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 临床医学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 10 篇 image processing
  • 8 篇 image segmentati...
  • 5 篇 image
  • 5 篇 pattern recognit...
  • 4 篇 analysis
  • 4 篇 detection
  • 4 篇 feature extracti...
  • 4 篇 algorithm
  • 4 篇 object recogniti...
  • 3 篇 markov
  • 3 篇 segmentation
  • 3 篇 support vector m...
  • 3 篇 information
  • 3 篇 target tracking
  • 3 篇 edge
  • 3 篇 tracking
  • 3 篇 watershed
  • 3 篇 car-following mo...
  • 3 篇 estimation
  • 3 篇 k-means

机构

  • 30 篇 inst. of image p...
  • 7 篇 state key lab. o...
  • 5 篇 inst. of image p...
  • 4 篇 inst. of image p...
  • 4 篇 inst. of image p...
  • 3 篇 inst. of image p...
  • 3 篇 lab. for image p...
  • 3 篇 inst. of pattern...
  • 3 篇 inst. of image p...
  • 2 篇 state education ...
  • 2 篇 inst. of image p...
  • 2 篇 school of comput...
  • 2 篇 inst. of pattern...
  • 2 篇 inst. for patter...
  • 2 篇 state key lab. o...
  • 2 篇 inst.of image pr...
  • 2 篇 inst. of image p...
  • 2 篇 inst.of image pr...
  • 2 篇 inst. for patter...
  • 2 篇 inst. of image p...

作者

  • 22 篇 yang jie
  • 8 篇 shi peng-fei
  • 8 篇 cao zhiguo
  • 8 篇 liu jian
  • 7 篇 liu yun-cai
  • 5 篇 jie yang
  • 5 篇 wang yuehuan
  • 5 篇 tian jin-wen
  • 4 篇 施鹏飞
  • 4 篇 刘允才
  • 4 篇 zhang tian-xu
  • 4 篇 zhang tianxu
  • 4 篇 tian jinwen
  • 3 篇 liu xiao-jun
  • 3 篇 zheng yi
  • 3 篇 gu irene yu-hua
  • 3 篇 yao li-xiu
  • 3 篇 li zhi-peng
  • 3 篇 hu han-ping
  • 2 篇 yun yixiao

语言

  • 81 篇 英文
  • 37 篇 中文
检索条件"机构=Inst. of Pattern Recognition and Image Processing"
118 条 记 录,以下是1-10 订阅
排序:
Crowd Scene Analysis: Crowd Counting using MCNN based on Self-Supervised training with Attention Mechanism  25
Crowd Scene Analysis: Crowd Counting using MCNN based on Sel...
收藏 引用
25th International Multi Topic Conference, INMIC 2023
作者: Asif, Muhammad Junaid Asad, Mujtaba Imran, Shaheer University of Central Punjab Faculty of It & Cs Lahore Pakistan Inst. of Image Processing and Pattern Recognition Seiee Sjtu Shanghai China
Fully-supervised learning requires expensive and laborious annotations of labeled data for crowd-counting tasks. To alleviate this burden, it is desirable to explore methods that reduce the need for extensive labeling... 详细信息
来源: 评论
Crowd Scene Analysis: Crowd Counting using MCNN based on Self-Supervised training with Attention Mechanism
Crowd Scene Analysis: Crowd Counting using MCNN based on Sel...
收藏 引用
IEEE International Conference on Multi Topic
作者: Muhammad Junaid Asif Mujtaba Asad Shaheer Imran Faculty of IT & CS University of Central Punjab Lahore Pakistan SEIEE SJTU Inst. of Image Processing and Pattern Recognition Shanghai China
Fully-supervised learning requires expensive and laborious annotations of labeled data for crowd-counting tasks. To alleviate this burden, it is desirable to explore methods that reduce the need for extensive labeling...
来源: 评论
Multiscale Deep Convolutional Networks for Characterization and Detection of Alzheimer's Disease Using MR images  26
Multiscale Deep Convolutional Networks for Characterization ...
收藏 引用
26th IEEE International Conference on image processing, ICIP 2019
作者: Ge, Chenjie Qu, Qixun Gu, Irene Yu-Hua Store Jakola, Asgeir Dept. of Electrical Engineering Chalmers University of Technology Sweden Inst. of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Sweden Inst. of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
This paper addresses the issues of Alzheimer's disease (AD) characterization and detection from Magnetic Resonance images (MRIs). Many existing AD detection methods use single-scale feature learning from brain sca... 详细信息
来源: 评论
Saliency Propagation from Simple to Difficult
Saliency Propagation from Simple to Difficult
收藏 引用
IEEE Conference on Computer Vision and pattern recognition
作者: Chen Gong Dacheng Tao Wei Liu S. J. Maybank Meng Fang Keren Fu Jie Yang Inst. of Image Process. & Pattern Recognition Shanghai Jiao Tong Univ. Shanghai China
Saliency propagation has been widely adopted for identifying the most attractive object in an image. The propagation sequence generated by existing saliency detection methods is governed by the spatial relationships o... 详细信息
来源: 评论
Small target detection using an optimization-based filter
Small target detection using an optimization-based filter
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: K. Xie K. Fu T. Zhou J. Yang Q. Wu X. He Inst. of Image Process. & Pattern Recognition Shanghai Jiao Tong Univ. Shanghai China
Small target detection is a critical problem in the Infrared Search And Track (IRST) system. Although it has been studied for years, there are some challenges remained, e.g. cloud edges and horizontal lines are likely... 详细信息
来源: 评论
Video-based tracking and quantified assessment of spontaneous limb movements in neonates
Video-based tracking and quantified assessment of spontaneou...
收藏 引用
International Conference on e-health Networking, Applications and Services (HealthCom)
作者: Long Xu Irene Yu-Hua Gu Anders Flisberg Magnus Thordstein Inst. of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Dept. of Signals and Systems Chalmers University of Technology Gotheburg Sweden Dept. of Pediatrics Sahlgrenska University Hospital Gothenburg Sweden Dept. of Clinical Neurophysiology Sahlgrenska University Hospital Gothenburg Sweden
Central nervous system dysfunction in infants may be manifested through inconsistent, rigid and abnormal limb movements. Detection and quantification of these movements in infants from videos are hence desirable for p... 详细信息
来源: 评论
Visual object tracking with online learning on Riemannian manifolds by one-class support vector machines
Visual object tracking with online learning on Riemannian ma...
收藏 引用
作者: Yun, Yixiao Fu, Keren Gu, Irene Yu-Hua Yang, Jie Dept. of Signals and Systems Chalmers Univ. of Technology Gothenburg41296 Sweden Inst. of Image Processing and Pattern Recognition Shanghai Jiao Tong Univ. Shanghai200240 China
This paper addresses issues in video object tracking. We propose a novel method where tracking is regarded as a one-class classification problem of domain-shift objects. The proposed tracker is inspired by the fact th... 详细信息
来源: 评论
Human activity recognition in images using SVMs and geodesics on smooth manifolds  14
Human activity recognition in images using SVMs and geodesic...
收藏 引用
8th ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2014
作者: Yun, Yixiao Fu, Keren Gu, Irene Yu-Hua Aghajan, Hamid Yang, Jie Dept. of Signals and Systems Chalmers University of Technology Sweden Inst. of Image Processing and Pattern Recognition Shanghai Jiao Tong University China IMinds Ghent University Belgium AIR Lab. Stanford University United States
This paper addresses the problem of human activity recognition in still images. We propose a novel method that focuses on human-object interaction for feature representation of activities on Riemannian manifolds, and ... 详细信息
来源: 评论
VISUAL OBJECT TRACKING WITH ONLINE LEARNING ON RIEMANNIAN MANIFOLDS BY ONE-CLASS SUPPORT VECTOR MACHINES
VISUAL OBJECT TRACKING WITH ONLINE LEARNING ON RIEMANNIAN MA...
收藏 引用
IEEE International Conference on image processing
作者: Yixiao Yun Keren Fu Irene Yu-Hua Gu Jie Yang Dept. of Signals and Systems Chalmers Univ. of Technology Inst. of Image Processing & Pattern Recognition Shanghai Jiao Tong Univ.
This paper addresses issues in video object tracking. We propose a novel method where tracking is regarded as a one-class classification problem of domain-shift objects. The proposed tracker is inspired by the fact th... 详细信息
来源: 评论
3D deformable surfaces with locally self-adjusting parameters - A robust method to determine cell nucleus shapes
3D deformable surfaces with locally self-adjusting parameter...
收藏 引用
International Conference on pattern recognition
作者: Keuper, Margret Schmidt, Thorsten Padeken, Jan Heun, Patrick Palme, Klaus Burkhardt, Hans Ronneberger, Olaf Pattern Recognition and Image Processing Computer Science Department Freiburg University Germany Max-Planck Institute of Immunobiology Freiburg Germany University of Freiburg Germany Inst. of Biology II Freiburg Inst. for Advanced Studies - FRIAS University of Freiburg Germany
When using deformable models for the segmentation of biological data, the choice of the best weighting parameters for the internal and external forces is crucial. Especially when dealing with 3D fluorescence microscop... 详细信息
来源: 评论