In this project, we study efficient algorithms for solving problems with exponentials, but we'll see that for many data sets, the solution is not well determined.
In this project, we study efficient algorithms for solving problems with exponentials, but we'll see that for many data sets, the solution is not well determined.
When faced with a spreading infection, public health workers want to predict its path and severity to make decisions about vaccination strategies, quarantine policy, and the use of public health resources. This is tru...
详细信息
When faced with a spreading infection, public health workers want to predict its path and severity to make decisions about vaccination strategies, quarantine policy, and the use of public health resources. This is true whether the pathogen?s dispersion is natural (for example, the spread of influenza in 1918) or deliberate (for example, the spread of anthrax via terrorism). Effective mathematical models can help us test a public health policy?s potential outcome and arrive at an effective response. In this issue, we focus on a simplified model of the spread of an infection and develop some tools that lend insight into its behavior.
In this month's problem, we use linear algebra and matrix-updating techniques to track a set of moving signals. The solution to last month's problem on clustering data, which appears at the end of this article...
详细信息
In this month's problem, we use linear algebra and matrix-updating techniques to track a set of moving signals. The solution to last month's problem on clustering data, which appears at the end of this article, illustrates the complications of determining useful clusters.
Inverse problems are among the most challenging computations in science and engineering because they involve determining the parameters of a system that is only observed indirectly. For example, we might have a spectr...
详细信息
Inverse problems are among the most challenging computations in science and engineering because they involve determining the parameters of a system that is only observed indirectly. For example, we might have a spectrum and want to determine the species that produced it as well as their relative proportions. Or we may have sonar measurements of a containment tank and want to know whether it has an internal crack.
The article discusses the partial solution to image deblurring. In this problem, the best way to choose the regularization parameter is by eye. Some nonlinear reconstruction algorithms that reduce the problem are also...
详细信息
The article discusses the partial solution to image deblurring. In this problem, the best way to choose the regularization parameter is by eye. Some nonlinear reconstruction algorithms that reduce the problem are also discussed. In many applications, one must choose the regularization parameter by automatic methods rather than by eye.
Aboard current ships, such as the DDG 51, engineering control and damage control activities are manpower intensive. It is anticipated that, for future combatants, the workload demand arising from operation of systems ...
详细信息
Aboard current ships, such as the DDG 51, engineering control and damage control activities are manpower intensive. It is anticipated that, for future combatants, the workload demand arising from operation of systems under conditions of normal steaming and during casualty response will need to be markedly reduced via automated monitoring, autonomous control, and other technology initiatives. Current DDG 51 class ships can be considered as a manpower baseline and under Condition III typical engineering control involves seven to eight watchstanders at manned stations in the Central Control Station, the engine rooms and other machinery spaces. In contrast to this manning level, initiatives such as DD 21 and the integrated engineering plant (IEP) envision a partnership between the operator and the automation system, with more and more of the operator's functions being shifted to the automation system as manning levels decrease. This paper describes some human systems integration studies of workload demand reduction and, consequently, manning reduction that can be achieved due to application of several advanced technology concepts. advanced system concept studies in relation to workload demand are described and reviewed including. Piecemeal applications of diverse automation and remote control technology concepts to selected high driver tasks in current DDG 51 activities. Development of the reduced ship's crew by virtual presence system that will provide automated monitoring and display to operators of machinery health, compartment conditions, and personnel health. The IEP envisions the machinery control system as a provider of resources that are used by various consumers around the ship. Resource needs and consumer priorities are at all times dependent upon the ship's current mission and the availability of equipment pawnbrokers.
作者:
Baker, CKrull, RSnyder, GLincoln, WMalone, TBClifford C. Baker
CIE CHFEP is a senior staff scientist at Carlow International Incorporated. He has applied most of his 24 years of experience in the application of human engineering technology to maritime systems. Mr. Baker has directed much of Carlow's efforts to reduce ship workload and to improve human performance and maritime safety through application of human factors methods and data. He is a Certified Industrial Ergonomist (CIE) as well as a Certified Human Factors Engineering Professional (CHFEP). Both certifications were granted by Oxford Research where Mr. Baker also serves as an Advisory Board member. Russell D. Krull
P.E. is a senior engineer with A&T/Proteus Engineering with more than 18 years of experi-ence in marine engineering naval architecture and program management including 16 years of active duty in the U.S. Coast Guard. Recent experience includes advanced ship design studies engineering software development technical support for the USMC Advanced Amphibious Assault Vehicle propulsion systems analyses ship structural engineering and cargo handling systems engineering. Mr. Krull has an M.S.E. in naval architecture and marine engineering and an M.S.E. in industrial and operations engineering from University of Michigan and a B.S. in ocean engineering from the U.S. Coast Guard Academy. Capt. Glenn L. Snyder
USCG. Regrettably since this paper was originally written Capt. Snyder has passed away. At the time of his death he was an operations specialist assigned to the Coast Guard's Deepwater Capabilities Replacement Project as Chief of Human Systems Integration. He served as commanding officer of the patrol boat Cape George (WPB-95306) the icebreaking tug Biscayne Bay (WTGB-104) and the cutter Legare (WMEC-911). A 1975 graduate of the U.S. Coast Guard Academy Capt. Snyder held an M.A. in national security and strategic studies from the U.S. Naval War College and an M.A. in international relations from Salve Regina College. In addition he was a 1998 fellow of the Foreign Service
The U.S. Coast Guard is in the concept exploration phase of its Integrated Deepwater System (IDS) acquisition project. This project will define the next generation of surface, air and command, control, communications,...
详细信息
The U.S. Coast Guard is in the concept exploration phase of its Integrated Deepwater System (IDS) acquisition project. This project will define the next generation of surface, air and command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR) assets used to perform the Coast Guard's missions in the IDS environment (>50 NM off the U. S. coastline). As part of early technology investigations, the needs exist to: (1) analyze the workload requirements of the IDS, (2) identify alternative means to perform ship's work, and (3) optimize ship manning consistent with ship workload, performance criteria, and the available tools and equipment aboard. To reduce shipboard work requires an understanding of the mission and support requirements placed on the vessel and crew, how these requirements are currently met, and how requirements might otherwise be met to reduce workload and crew size. This study examined currently implemented workload and manpower reducing approaches of commercial maritime fleets, U.S. and foreign navies, and foreign coastguards. These approaches were analyzed according to evaluation criteria approved by the IDS acquisition project team. From this, strategies for shipboard work reduction that may be considered for adoption by the IDS were identified and analyzed according to performance and costs factors. Ten workload-reducing strategies were identified: damage control, bridge, multiple crewing, engineering, risk acceptance, modularity, deck, enabling technologies, ship/personnel readiness, and operability and maintainability.
作者:
SKOLNICK, DHSKOLNICK, ADavid H. Skolnickhas practiced naval engineering in both government and industry. He has supported the Military Sealift Command and the Naval Sea Systems Command Ship Design Group and Amphibious Ship Acquisition Program Office
participating in the design and assessment of ship structure evaluation of intact and damaged stability and arrangements during design and construction phases of acquisition conversion and overhaul. He is currently involved in systems engineering and integration. Recent responsibilities have included requirements analyses and feasibility studies interface analyses and computer aided analyses. He received his B.S. in naval architecture and marine engineering from Webb Institute of Naval Architecture in 1982 (as an ASNE scholar) and is currently an M.S. candidate in systems engineering at the University of Virginia. Alfred Skolnickserved over 30 years as an engineering duty officer and retired from the Navy with the rank of captain in 1983. His early assignments included tactical missile engineering
shipboard duty and Polaris submarine inertial navigation. He later served in the Deep Submergence Systems Project was project director
surface effect ships (SES) David Taylor Model Basin director of technology
Joint Navy-Commerce SES Program director
combat systems Naval Sea Systems Command and project manager directed energy weapons. His awards include the Navy League's Parsons Award in 1979 for scientific and technical progress ASNE's Gold Medal in 1981 for high energy laser development the Navy Legion of Merit in 1983 National Capital Engineer of the Year in 1986 and the American Defense Preparedness Association Gold Medal in 1988 for contributions to strategic defense. He was president of ASNE from 1985–1989. He received his B.S. in mathematics from Queens College his M.A. in mathematics from Columbia University his M.S. in electrical engineering from U.S. Naval Postgraduate School and his Ph.D. in electrical engineering/applied mathematics from Polytechnic University. He w
Changing threat requirements and radical budget shifts imply that Navy operational needs will broaden and engineering solutions will face tougher constraints. Existing and emerging technology promise increased combat ...
详细信息
Changing threat requirements and radical budget shifts imply that Navy operational needs will broaden and engineering solutions will face tougher constraints. Existing and emerging technology promise increased combat capability in smaller packages;space-based assets will allow operator orchestration of widely dispersed naval units via connectivity attributes previously unavailable. Tactical data relay by downlink may permit reallocation of responsibilities among several platforms, space, air, or seaborne, so ships can be outfitted for custom-use (sensing, unique data processing, high-firepower) and optimized to meet specific mission needs. These evolving capabilities demand a fresh look at ship concepts and prospective force structures consistent with global and fiscal realities. Warfighting performance formerly unknown in small ship design may offer a very effective solution to the intricate, interacting issues of falling defense budgets, diverse operational requirements and complex national priorities. Multimission ships which take advantage of new or current technology to reduce ship size, manning and cost could be affordable in sufficient numbers to meet our continuing worldwide obligations, complement our larger ships' force structure, and produce a balanced fleet. These same ships could satisfy U.S. maritime needs beyond the Navy and improve export trade through foreign military sales (FMS).
暂无评论