In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhan...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce ***,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and *** paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present *** study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction *** the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the *** original dataset is used in trainingmachine learning models,and further used in generating SHAP values *** the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based *** new integrated dataset is used in re-training the machine learning *** new SHAP values generated from these models help in validating the contributions of feature sets in predicting *** conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making *** this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the *** study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of *** proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area un
Background: Epilepsy is a neurological disorder that leads to seizures. This occurs due to excessive electrical discharge by the brain cells. An effective seizure prediction model can aid in improving the lifestyle of...
详细信息
Parkinson's disease (PD) diagnosis involves the assessment of a variety of motor and non-motor symptoms. To accurately diagnose PD, it is necessary to differentiate its symptoms from those of other conditions. Dur...
详细信息
In response to inquiries posed in natural languages, question-answering systems (QASs) produce responses. The capabilities of early QASs are limited because they were designed for certain domains. The current generati...
详细信息
Feature engineering is critical for improving machine learning performance (ML), especially when handling categorical data. Traditional encoding methods, such as one-hot and label encoding, often result in challenges ...
详细信息
To improve the effectiveness of online learning, the learning materials recommendation is required to be personalised to the learner material recommendations must be personalized to learners. The existing approaches a...
详细信息
The most common illness among individuals and the general population in the medical field is diabetes. This is coupled with a careful diabetic retinal that has no signal. The historical record offers unrecoverable ins...
详细信息
Cloud computing (CC) is a cost-effective platform for users to store their data on the internet rather than investing in additional devices for storage. Data deduplication (DD) defines a process of eliminating redunda...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has ex...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has expanded the potential targets that hackers might *** adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or *** identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious *** research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)*** proposed model can identify various types of cyberattacks,including conventional and distinctive *** networks,a specific kind of feedforward neural networks,possess an intrinsic memory *** Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended *** such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual *** are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection *** model utilises Recurrent Neural Networks,specifically exploiting LSTM *** proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.
Understanding the learner’s requirements and status is important for recommending relevant and appropriate learning materials to the learner in personalized learning. For this purpose, the learning recommendatio...
详细信息
暂无评论