咨询与建议

限定检索结果

文献类型

  • 2,309 篇 期刊文献
  • 1,785 篇 会议
  • 18 册 图书

馆藏范围

  • 4,112 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,557 篇 工学
    • 1,847 篇 计算机科学与技术...
    • 1,566 篇 软件工程
    • 567 篇 信息与通信工程
    • 406 篇 生物工程
    • 319 篇 电气工程
    • 300 篇 生物医学工程(可授...
    • 291 篇 控制科学与工程
    • 275 篇 光学工程
    • 241 篇 电子科学与技术(可...
    • 144 篇 化学工程与技术
    • 112 篇 机械工程
    • 101 篇 网络空间安全
    • 100 篇 仪器科学与技术
    • 94 篇 安全科学与工程
    • 93 篇 动力工程及工程热...
  • 1,706 篇 理学
    • 806 篇 数学
    • 545 篇 物理学
    • 468 篇 生物学
    • 305 篇 统计学(可授理学、...
    • 176 篇 化学
    • 127 篇 系统科学
    • 115 篇 地球物理学
  • 715 篇 管理学
    • 380 篇 管理科学与工程(可...
    • 362 篇 图书情报与档案管...
    • 194 篇 工商管理
  • 300 篇 医学
    • 262 篇 临床医学
    • 224 篇 基础医学(可授医学...
    • 131 篇 公共卫生与预防医...
    • 127 篇 药学(可授医学、理...
  • 117 篇 法学
    • 106 篇 社会学
  • 64 篇 经济学
  • 64 篇 农学
  • 49 篇 教育学
  • 16 篇 文学
  • 5 篇 军事学
  • 2 篇 艺术学

主题

  • 136 篇 deep learning
  • 129 篇 accuracy
  • 122 篇 machine learning
  • 102 篇 training
  • 96 篇 feature extracti...
  • 82 篇 real-time system...
  • 77 篇 predictive model...
  • 76 篇 computational mo...
  • 74 篇 semantics
  • 68 篇 data models
  • 62 篇 convolutional ne...
  • 50 篇 generative adver...
  • 49 篇 internet of thin...
  • 46 篇 artificial intel...
  • 45 篇 optimization
  • 45 篇 adaptation model...
  • 44 篇 image segmentati...
  • 43 篇 reinforcement le...
  • 41 篇 visualization
  • 40 篇 neural networks

机构

  • 170 篇 university of ch...
  • 149 篇 college of compu...
  • 80 篇 cas key lab of n...
  • 61 篇 school of comput...
  • 60 篇 cas key laborato...
  • 52 篇 institute of com...
  • 51 篇 institute of dat...
  • 46 篇 national enginee...
  • 43 篇 school of comput...
  • 41 篇 data science ins...
  • 39 篇 nanyang technolo...
  • 39 篇 department of co...
  • 28 篇 beijing advanced...
  • 27 篇 college of compu...
  • 27 篇 dipartimento di ...
  • 26 篇 the oskar klein ...
  • 25 篇 institute of hig...
  • 24 篇 national institu...
  • 24 篇 peng cheng labor...
  • 24 篇 department of br...

作者

  • 154 篇 cheng xueqi
  • 91 篇 guo jiafeng
  • 61 篇 niyato dusit
  • 43 篇 shen huawei
  • 34 篇 lan yanyan
  • 33 篇 jin xiaolong
  • 32 篇 chen mingzhe
  • 29 篇 shen linlin
  • 27 篇 e. j. siskind
  • 27 篇 r. bellazzini
  • 26 篇 j. b. thayer
  • 25 篇 p. spinelli
  • 24 篇 m. kuss
  • 24 篇 s. guiriec
  • 24 篇 pang liang
  • 23 篇 p. a. caraveo
  • 23 篇 p. f. michelson
  • 23 篇 s. ciprini
  • 23 篇 r. rando
  • 22 篇 guo yike

语言

  • 3,743 篇 英文
  • 353 篇 其他
  • 27 篇 中文
检索条件"机构=Institute for Data Science and Computing"
4112 条 记 录,以下是3791-3800 订阅
排序:
MatchZoo: A toolkit for deep text matching
arXiv
收藏 引用
arXiv 2017年
作者: Fan, Yixing Pang, Liang Hou, JianPeng Guo, Jiafeng Lan, Yanyan Cheng, Xueqi Cas Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
In recent years, deep neural models have been widely adopted for text matching tasks, such as question answering and information retrieval, showing improved performance as compared with previous methods. In this paper... 详细信息
来源: 评论
Improving individual predictions using social networks assortativity
Improving individual predictions using social networks assor...
收藏 引用
International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and data Visualization (WSOM)
作者: Dounia Mulders Cyril de Bodt Johannes Bjelland Alex Sandy Pentland Michel Verleysen Yves-Alexandre de Montjoye ICTEAM institute Université catholiaue de Louvain Telenor Research MIT Media Lab Massachusetts Institute of Technology Department of Computing Data Science Institute
Social networks are known to be assortative with respect to many attributes, such as age, weight, wealth, level of education, ethnicity and gender. This can be explained by influences and homophilies. Independently of... 详细信息
来源: 评论
Investigating different syntactic context types and context representations for learning word embeddings
Investigating different syntactic context types and context ...
收藏 引用
2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
作者: Li, Bofang Liu, Tao Zhao, Zhe Tang, Buzhou Drozd, Aleksandr Rogers, Anna Du, Xiaoyong School of Information Renmin University of China China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Shenzhen Graduate School Harbin Institute of Technology China Global Scientific Information and Computing Center Tokyo Institute of Technology China Department of Computer Science University of Massachusetts Lowell United States
The number of word embedding models is growing every year. Most of them are based on the co-occurrence information of words and their contexts. However, it is still an open question what is the best definition of cont... 详细信息
来源: 评论
Low-resolution face recognition in the wild via selective knowledge distillation
arXiv
收藏 引用
arXiv 2018年
作者: Ge, Shiming Zhao, Shengwei Li, Chenyu Li, Jia Institute of Information Engineering Chinese Academy of Sciences Beijing100095 China Institute of Information Engineering Chinese Academy of Sciences School of Cyber Security at University of Chinese Academy of Sciences China State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
Typically, the deployment of face recognition models in the wild needs to identify low-resolution faces with extremely low computational cost. To address this problem, a feasible solution is compressing a complex face... 详细信息
来源: 评论
Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning
arXiv
收藏 引用
arXiv 2022年
作者: Shanahan, Phiala Terao, Kazuhiro Whiteson, Daniel Aarts, Gert Adelmann, Andreas Akchurin, N. Alexandru, Andrei Amram, Oz Andreassen, Anders Apresyan, Artur Avestruz, Camille Bartoldus, Rainer Bechtol, Keith Benkendorfer, Kees Benelli, Gabriele Bernius, Catrin Bogatskiy, Alexander Bortolato, Blaz Boyda, Denis Brooijmans, Gustaaf Calafiura, Paolo Calì, Salvatore Canelli, Florencia Chachamis, Grigorios Chekanov, S.V. Chen, Deming Chen, Thomas Y. Ćiprijanović, Aleksandra Collins, Jack H. Connolly, Andrew J. Coughlin, Michael Dai, Biwei Damgov, J. DeZoort, Gage Diaz, Daniel Dillon, Barry M. Dinu, Ioan-Mihail Dong, Zhongtian Donini, Julien Duarte, Javier Dugad, S. Dvorkin, Cora Faroughy, D.A. Feickert, Matthew Feng, Yongbin Fenton, Michael Foreman, Sam De Freitas, Felipe F. Funcke, Lena Gc, P. Gandrakota, Abhijith Ganguly, Sanmay Garrison, Lehman H. Gessner, Spencer Ghosh, Aishik Gonsk, Julia Graham, Matthew Gray, Lindsey Grönroos, S. Hackett, Daniel C. Harris, Philip Hauck, Scott Herwig, Christian Holzman, Burt Hopkins, Walter Hsu, Shih-Chieh Huang, Jin Huang, Yi Jin, Xiao-Yong Kagan, Michael Kah, Alan Kamenik, Jernej F. Kansal, Raghav Karagiorgi, Georgia Kasieczka, Gregor Katsavounidis, Erik Khoda, Elham E. Khosa, Charanjit K. Kipf, Thomas Komiske, Patrick Komm, Matthias Kondor, Risi Kourlitis, Evangelos Krause, Claudius Lamichhane, K. Le Pottier, Luc Lin, Meifeng Lin, Yin Liu, Mia Lu, Nan Lucini, Biagio Martinez, J. Martín-Ramiro, Pablo Matevc, Andrej McCormack, William Patrick Metodiev, Eric Mikuni, Vinicius Miller, David W. Mishra-Sharma, Siddharth Mukherjee, Samadrita Murnane, Daniel Nachman, Benjamin Narayan, Gautham Neubauer, Mark Ngadiuba, Jennifer Norberg, Scarlet Nord, Brian Ochoa, Inês Offermann, Jan T. Park, Sang Eon Pedro, Kevin Peña, Cristían Perloff, Alexx Pettee, Mariel Pierini, Maurizio Quast, T. Rankin, Dylan Ren, Yihui Rieger, Marcel Vlimant, Jean-Roch Roy, Avik Sanz, Veronica Sarda, Nilai Savard, Claire Scheinker, Alexander Seljak, Uroš Sheldon, Brian Shih, David Shimmin, Chase Smolkovic, Aleks Ste Swansea University SwanseaSA2 8PP United Kingdom Villazzano38123 Italy Paul Scherrer Institute PSI Villigen5232 Switzerland Texas Tech University LubbockTX79409 United States The George Washington University WashingtonDC20052 United States University of Maryland College ParkMD20742 United States The Johns Hopkins University BaltimoreMD21211 United States Google Mountain ViewCA94043 United States Fermi National Accelerator Laboratory BataviaIL60510 United States University of Michigan Ann ArborMI48109 United States SLAC National Accelerator Laboratory StanfordCA94309 United States University of Wisconsin-Madison 1150 University Avenue MadisonWI53706-1390 United States Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Reed College PortlandOR97202 United States Flatiron Institute 162 5th Avenue New YorkNY10010 United States Jožef Stefan Institute Jamova 39 Ljubljana1000 Slovenia Argonne National Laboratory ArgonneIL60439 United States The NSF AI Institute for Artificial Intelligence and Fundamental Interactions United States Nevis Laboratories Columbia University 136 S Broadway IrvingtonNY United States Massachusetts Institute of Technology 77 Massachusetts Ave CambridgeMA02139 United States University of Zurich Winterthurerstrasse 190 Zurich8057 Switzerland Switzerland University of Illinois at Urbana-Champaign ChampaignIL61820 United States University of Washington SeattleWA98195 United States University of Minnesota MinneapolisMN55455 United States Berkeley Center for Cosmological Physics University of California Berkeley United States Princeton University PrincetonNJ08544 United States University of California La Jolla San DiegoCA92093 United States University of Heidelberg Heidelberg Germany University of Kansas 1251 Wescoe Hall Dr. LawrenceKS66045 United States Université Clermont Auvergne France Tata Institute of Fundamental Research Mumbai400005 India Harvard University
The rapidly-developing intersection of machine learning (ML) with high-energy physics (HEP) presents both opportunities and challenges to our community. Far beyond applications of standard ML tools to HEP problems, ge... 详细信息
来源: 评论
HoloScope: Topology-and-Spike Aware Fraud Detection
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Shenghua Hooi, Bryan Faloutsos, Christos CAS Key Laboratory of Network Data Science & Technology Institute of Computing Technology Chinese Academy of Sciences Carnegie Mellon University
As online fraudsters invest more resources, including purchasing large pools of fake user accounts and dedicated IPs, fraudulent attacks become less obvious and their detection becomes increasingly challenging. Existi... 详细信息
来源: 评论
Marked temporal dynamics modeling based on recurrent neural network
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Yongqing Liu, Shenghua Shen, Huawei Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
We are now witnessing the increasing availability of event stream data, i.e., a sequence of events with each event typically being denoted by the time it occurs and its mark information (e.g., event type). A fundament... 详细信息
来源: 评论
Distinguishing unitary gates on the IBM quantum processor
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Shusen Li, Yinan Duan, Runyao School of Data and Computer Science Sun Yat-sen University Guangzhou Guangdong510006 China Centre for Quantum Software and Information Faculty of Engineering and Information Technology University of Technology SydneyNSW2007 Australia Centrum Wiskunde & Informatica and Research Center for Quantum Software Netherlands Institute for Quantum Computing Baidu Inc. Beijing100193 China
An unknown unitary gates, which is secretly chosen from several known ones, can always be distinguished perfectly. In this paper, we implement such a task on IBM's quantum processor. More precisely, we experimenta... 详细信息
来源: 评论
EagleMine: Vision-guided mining in large graphs
arXiv
收藏 引用
arXiv 2017年
作者: Feng, Wenjie Liu, Shenghua Faloutsos, Christos Hooi, Bryan Shen, Huawei Cheng, Xueqi Cas Key Laboratory of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences School of Computer Science Carnegie Mellon University
Given a graph with millions of nodes, what patterns exist in the distributions of node characteristics, and how can we detect them and separate anomalous nodes in a way similar to human vision? In this paper, we propo... 详细信息
来源: 评论
Not just privacy: Improving performance of private deep learning in mobile cloud
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Ji Zhang, Jianguo Bao, Weidong Zhu, Xiaomin Cao, Bokai Yu, Philip S. College of Systems Engineering National University of Defense Technology Changsha China Department of Computer Science University of Illinois at Chicago Chicago United States College of Systems Engineering State Key Laboratory of High Performance Computing National University of Defense Technology Changsha China Facebook Inc. Menlo Park United States Department of Computer Science University of Illinois at Chicago Chicago United States Institute for Data Science Tsinghua University Beijing China
The increasing demand for on-device deep learning services calls for a highly efficient manner to deploy deep neural networks (DNNs) on mobile devices with limited capacity. The cloud-based solution is a promising app... 详细信息
来源: 评论