咨询与建议

限定检索结果

文献类型

  • 2,322 篇 期刊文献
  • 1,785 篇 会议
  • 18 册 图书

馆藏范围

  • 4,125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,568 篇 工学
    • 1,857 篇 计算机科学与技术...
    • 1,572 篇 软件工程
    • 569 篇 信息与通信工程
    • 406 篇 生物工程
    • 323 篇 电气工程
    • 300 篇 生物医学工程(可授...
    • 293 篇 控制科学与工程
    • 275 篇 光学工程
    • 241 篇 电子科学与技术(可...
    • 144 篇 化学工程与技术
    • 113 篇 机械工程
    • 103 篇 网络空间安全
    • 100 篇 仪器科学与技术
    • 94 篇 安全科学与工程
    • 93 篇 动力工程及工程热...
  • 1,711 篇 理学
    • 811 篇 数学
    • 545 篇 物理学
    • 468 篇 生物学
    • 307 篇 统计学(可授理学、...
    • 177 篇 化学
    • 128 篇 系统科学
    • 115 篇 地球物理学
  • 718 篇 管理学
    • 382 篇 管理科学与工程(可...
    • 364 篇 图书情报与档案管...
    • 196 篇 工商管理
  • 301 篇 医学
    • 262 篇 临床医学
    • 225 篇 基础医学(可授医学...
    • 131 篇 公共卫生与预防医...
    • 127 篇 药学(可授医学、理...
  • 118 篇 法学
    • 106 篇 社会学
  • 64 篇 经济学
  • 64 篇 农学
  • 51 篇 教育学
  • 16 篇 文学
  • 5 篇 军事学
  • 2 篇 艺术学

主题

  • 136 篇 deep learning
  • 128 篇 accuracy
  • 121 篇 machine learning
  • 102 篇 training
  • 95 篇 feature extracti...
  • 82 篇 real-time system...
  • 77 篇 predictive model...
  • 76 篇 computational mo...
  • 74 篇 semantics
  • 67 篇 data models
  • 62 篇 convolutional ne...
  • 50 篇 internet of thin...
  • 50 篇 generative adver...
  • 46 篇 artificial intel...
  • 45 篇 optimization
  • 45 篇 adaptation model...
  • 44 篇 image segmentati...
  • 43 篇 reinforcement le...
  • 41 篇 visualization
  • 40 篇 neural networks

机构

  • 169 篇 university of ch...
  • 150 篇 college of compu...
  • 80 篇 cas key lab of n...
  • 62 篇 school of comput...
  • 60 篇 cas key laborato...
  • 52 篇 institute of com...
  • 51 篇 institute of dat...
  • 46 篇 national enginee...
  • 43 篇 school of comput...
  • 41 篇 data science ins...
  • 40 篇 nanyang technolo...
  • 39 篇 department of co...
  • 28 篇 beijing advanced...
  • 27 篇 college of compu...
  • 27 篇 dipartimento di ...
  • 26 篇 the oskar klein ...
  • 24 篇 national institu...
  • 24 篇 institute of hig...
  • 24 篇 center for data ...
  • 24 篇 shenzhen researc...

作者

  • 154 篇 cheng xueqi
  • 91 篇 guo jiafeng
  • 62 篇 niyato dusit
  • 43 篇 shen huawei
  • 34 篇 lan yanyan
  • 33 篇 jin xiaolong
  • 32 篇 chen mingzhe
  • 29 篇 shen linlin
  • 27 篇 e. j. siskind
  • 27 篇 r. bellazzini
  • 26 篇 j. b. thayer
  • 25 篇 p. spinelli
  • 24 篇 m. kuss
  • 24 篇 s. guiriec
  • 24 篇 pang liang
  • 23 篇 p. a. caraveo
  • 23 篇 p. f. michelson
  • 23 篇 s. ciprini
  • 23 篇 r. rando
  • 22 篇 guo yike

语言

  • 3,756 篇 英文
  • 354 篇 其他
  • 26 篇 中文
检索条件"机构=Institute for Data Science and Computing"
4125 条 记 录,以下是3941-3950 订阅
排序:
Multivariate Spearman's p for Aggregating Ranks Using Copulas
收藏 引用
Journal of Machine Learning Research 2016年 17卷 1-30页
作者: Bedo, Justin Ong, Cheng Soon Walter and Eliza Hall Institute 1G Royal Parade ParkvilleVIC3052 Australia Department of Computing and Information Systems University of Melbourne VIC3010 Australia Data61 CSIRO 7 London Circuit CanberraACT2601 Australia Research School of Computer Science Australian National University Department of Electrical and Electronic Engineering VIC3010 Australia
We study the problem of rank aggregation: given a set of ranked lists, we want to form a consensus ranking. Furthermore, we consider the case of extreme lists: i.e., only the rank of the best or worst elements are kno... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROscience 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
Simulate Human Saccadic Scan-Paths in Target Searching
收藏 引用
International Journal of Intelligence science 2016年 第1期6卷 1-9页
作者: Lijuan Duan Jun Miao David M. W. Powers Jili Gu Laiyun Qing Beijing Key Laboratory of Trusted Computing Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data College of Computer Science and Technology Beijing University of Technology Beijing China National Engineering Laboratory for Critical Technologies of Information Security Classified Protection Beijing China Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences(CAS) Institute of Computing Technology CAS Beijing China School of Computer Science Engineering & Maths Flinders University of South Australia Adelaide South Australia Beijing Samsung Telecom R&D Center Beijing China University of Chinese Academy of Sciences Beijing China
Human saccade is a dynamic process of information pursuit. There are many methods using either global context or local context cues to model human saccadic scan-paths. In contrast to them, this paper introduces a mode... 详细信息
来源: 评论
Modeling parameter interactions in ranking SVM  15
Modeling parameter interactions in ranking SVM
收藏 引用
24th ACM International Conference on Information and Knowledge Management, CIKM 2015
作者: Zhang, Yaogong Xu, Jun Lan, Yanyan Guo, Jiafeng Xie, Maoqiang Huang, Yalou Cheng, Xueqi College of Computer and Control Engineering Nankai University China CAS Key Lab. of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China College of Software Nankai University China
Ranking SVM, which formalizes the problem of learning a ranking model as that of learning a binary SVM on preference pairs of documents, is a state-of-the-art ranking model in information retrieval. The dual form solu... 详细信息
来源: 评论
Security risk assessment based on bayesian multi-step attack graphs
收藏 引用
Journal of Computational Information Systems 2015年 第11期11卷 3911-3918页
作者: Yang, Yunxue Jin, Shuyuan Fang, Binxing CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Security risk assessment is fundamental to the security of network systems. Attack graphs have been widely used to evaluate the likelihood of possible multi-step attacks that exploit multiple vulnerabilities in this f... 详细信息
来源: 评论
A new evolving clustering algorithm for online data streams
A new evolving clustering algorithm for online data streams
收藏 引用
IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)
作者: Clauber Gomes Bezerra Bruno Sielly Jales Costa Luiz Affonso Guedes Plamen Parvanov Angelov Campus EaD Federal Institute of Rio Grande do Norte - IFRN Natal Brazil Campus Natal - Zona Norte Federal Institute of Rio Grande do Norte - IFRN Natal Brazil Federal University of Rio Grande do Norte - UFRN Natal RN BR Chair of Excellence Carlos III University Madrid Spain Data Science Group School of Computing and Communications Lancaster United Kingdom
In this paper, we propose a new approach to fuzzy data clustering. We present a new algorithm, called TEDA-Cloud, based on the recently introduced TEDA approach to outlier detection. TEDA-Cloud is a statistical method... 详细信息
来源: 评论
Chinese wall security policies information flows in business cloud
Chinese wall security policies information flows in business...
收藏 引用
IEEE International Conference on Big data
作者: Tsau-Young T. Y. Lin Institute of Data Science and Computing San Jose State University and GrC Society San Jose
A Business Cloud is defined to be a collection of company datasets that are stored on the "Cloud". For simplicity, we have assumed: Each company only has one dataset. There are information flows among these ... 详细信息
来源: 评论
Challenges in Chinese knowledge graph construction
Challenges in Chinese knowledge graph construction
收藏 引用
International Conference on data Engineering Workshops
作者: Chengyu Wang Ming Gao Xiaofeng He Rong Zhang Shanghai Key Laboratory of Trustworthy Computing Data Science and Engineering Institute East China Normal University Shanghai China
The automatic construction of large-scale knowledge graphs has received much attention from both academia and industry in the past few years. Notable knowledge graph systems include Google Knowledge Graph, DBPedia, YA... 详细信息
来源: 评论
Unresolved Gamma-Ray Sky through its Angular Power Spectrum
收藏 引用
Physical Review Letters 2018年 第24期121卷 241101-241101页
作者: M. Ackermann M. Ajello L. Baldini J. Ballet G. Barbiellini D. Bastieri R. Bellazzini E. Bissaldi R. D. Blandford R. Bonino E. Bottacini J. Bregeon P. Bruel R. Buehler E. Burns S. Buson R. A. Cameron R. Caputo P. A. Caraveo E. Cavazzuti S. Chen G. Chiaro S. Ciprini D. Costantin A. Cuoco S. Cutini F. D’Ammando P. de la Torre Luque F. de Palma A. Desai S. W. Digel N. Di Lalla M. Di Mauro L. Di Venere F. Fana Dirirsa C. Favuzzi A. Franckowiak Y. Fukazawa S. Funk P. Fusco F. Gargano D. Gasparrini N. Giglietto F. Giordano M. Giroletti D. Green I. A. Grenier L. Guillemot S. Guiriec D. Horan G. Jóhannesson M. Kuss S. Larsson L. Latronico J. Li I. Liodakis F. Longo F. Loparco P. Lubrano J. D. Magill S. Maldera D. Malyshev A. Manfreda M. N. Mazziotta I. Mereu P. F. Michelson W. Mitthumsiri T. Mizuno M. E. Monzani A. Morselli I. V. Moskalenko M. Negro E. Nuss M. Orienti E. Orlando M. Palatiello V. S. Paliya D. Paneque M. Persic M. Pesce-Rollins V. Petrosian F. Piron T. A. Porter G. Principe S. Rainò R. Rando M. Razzano S. Razzaque A. Reimer O. Reimer D. Serini C. Sgrò E. J. Siskind G. Spandre P. Spinelli D. J. Suson H. Tajima M. Takahashi J. B. Thayer L. Tibaldo D. F. Torres E. Troja T. M. Venters G. Vianello K. Wood M. Yassine G. Zaharijas S. Ammazzalorso N. Fornengo M. Regis Deutsches Elektronen Synchrotron DESY D-15738 Zeuthen Germany Department of Physics and Astronomy Clemson University Kinard Lab of Physics Clemson South Carolina 29634-0978 USA Università di Pisa and Istituto Nazionale di Fisica Nucleare Sezione di Pisa I-56127 Pisa Italy Laboratoire AIM CEA-IRFU/CNRS/Université Paris Diderot Service d’Astrophysique CEA Saclay F-91191 Gif sur Yvette France Istituto Nazionale di Fisica Nucleare Sezione di Trieste I-34127 Trieste Italy Dipartimento di Fisica Università di Trieste I-34127 Trieste Italy Istituto Nazionale di Fisica Nucleare Sezione di Padova I-35131 Padova Italy Dipartimento di Fisica e Astronomia “G. Galilei” Università di Padova I-35131 Padova Italy Istituto Nazionale di Fisica Nucleare Sezione di Pisa I-56127 Pisa Italy Dipartimento di Fisica “M. Merlin” dell’Università e del Politecnico di Bari I-70126 Bari Italy Istituto Nazionale di Fisica Nucleare Sezione di Bari I-70126 Bari Italy W. W. Hansen Experimental Physics Laboratory Kavli Institute for Particle Astrophysics and Cosmology Department of Physics and SLAC National Accelerator Laboratory Stanford University Stanford California 94305 USA Istituto Nazionale di Fisica Nucleare Sezione di Torino I-10125 Torino Italy Dipartimento di Fisica Università degli Studi di Torino I-10125 Torino Italy Department of Physics and Astronomy University of Padova Vicolo Osservatorio 3 I-35122 Padova Italy Laboratoire Univers et Particules de Montpellier Université Montpellier CNRS/IN2P3 F-34095 Montpellier France Laboratoire Leprince-Ringuet École polytechnique CNRS/IN2P3 F-91128 Palaiseau France NASA Goddard Space Flight Center Greenbelt Maryland 20771 USA Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center Greenbelt Maryland 20771 USA INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano via E. Bassini 15 I-20133 Milano Italy Italian Space Agency Via del Politecnico snc 00133 Roma Ita
The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi -large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining ... 详细信息
来源: 评论
Book Review: Quantitative Methods and Socio-Economic Applications in GIS, 2nd edition, F. Wang, CRC Press, Boca Raton, FL, 301 pages, 2015, £76.99 $119.95 ISBN 9781466584723
收藏 引用
Applied Spatial Analysis and Policy 2015年 第2期9卷 283-285页
作者: Higgs, Gary GIS Research Centre and Wales Institute of Social and Economic Research Data and Methods (WISERD) Faculty of Computing Engineering & Science University of South Wales Pontypridd UK
来源: 评论