咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 23 篇 会议

馆藏范围

  • 106 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 83 篇 工学
    • 51 篇 生物医学工程(可授...
    • 50 篇 光学工程
    • 41 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 31 篇 生物工程
    • 22 篇 电气工程
    • 20 篇 电子科学与技术(可...
    • 12 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 核科学与技术
    • 3 篇 安全科学与工程
    • 1 篇 仪器科学与技术
  • 56 篇 理学
    • 32 篇 生物学
    • 29 篇 物理学
    • 18 篇 数学
    • 10 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 系统科学
    • 1 篇 大气科学
  • 26 篇 医学
    • 25 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
    • 3 篇 特种医学
    • 3 篇 医学技术(可授医学...
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 5 篇 法学
    • 5 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 7 篇 magnetic resonan...
  • 7 篇 image segmentati...
  • 6 篇 medical imaging
  • 3 篇 cancer
  • 3 篇 deep learning
  • 3 篇 tumors
  • 2 篇 tissue
  • 2 篇 scalability
  • 2 篇 semantic segment...
  • 2 篇 generative adver...
  • 2 篇 pediatrics
  • 2 篇 clinical researc...
  • 2 篇 differential pri...
  • 2 篇 benchmarking
  • 2 篇 pipelines
  • 2 篇 diseases
  • 2 篇 radiotherapy
  • 2 篇 accuracy
  • 2 篇 image reconstruc...
  • 2 篇 standards

机构

  • 16 篇 institute of mac...
  • 15 篇 school of comput...
  • 14 篇 department of co...
  • 14 篇 school of biomed...
  • 10 篇 center for machi...
  • 10 篇 helmholtz ai hel...
  • 9 篇 school of biomed...
  • 9 篇 national biomedi...
  • 9 篇 center for data ...
  • 8 篇 university of pe...
  • 8 篇 institute of mac...
  • 8 篇 beijing internat...
  • 7 篇 lab crestview ra...
  • 7 篇 department of ra...
  • 7 篇 department of ne...
  • 6 篇 sage bionetworks...
  • 6 篇 department of qu...
  • 6 篇 national enginee...
  • 6 篇 mercy catholic m...
  • 6 篇 athinoula a mart...

作者

  • 29 篇 schnabel julia a...
  • 16 篇 rueckert daniel
  • 15 篇 kaissis georgios
  • 9 篇 kofler florian
  • 8 篇 bakas spyridon
  • 8 篇 ezhov ivan
  • 8 篇 linguraru marius...
  • 8 篇 bercea cosmin i.
  • 8 篇 eichhorn hannah
  • 7 篇 li hongwei bran
  • 7 篇 wang chunhao
  • 7 篇 kazerooni anahit...
  • 7 篇 chung verena
  • 7 篇 moawad ahmed w.
  • 7 篇 calabrese evan
  • 7 篇 anazodo udunna
  • 7 篇 piraud marie
  • 7 篇 hammernik kersti...
  • 6 篇 meier zeke
  • 6 篇 dong bin

语言

  • 79 篇 英文
  • 25 篇 其他
  • 2 篇 中文
检索条件"机构=Institute for Machine Learning in Biomedical Imaging"
106 条 记 录,以下是1-10 订阅
排序:
Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics  38
Probabilistic Decomposed Linear Dynamical Systems for Robust...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Chen, Yenho Mudrik, Noga Johnsen, Kyle A. Alagapan, Sankaraleengam Charles, Adam S. Rozell, Christopher J. Machine Learning Center Georgia Institute of Technology United States School of Electrical and Computer Engineering Georgia Institute of Technology United States Coulter Dept. of Biomedical Engineering Emory University Georgia Institute of Technology United States Department of Biomedical Engineering Mathematical Institute for Data Science Center for Imaging Science Kavli Neuroscience Discovery Institute Johns Hopkins University United States
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals. For example, switching and decomposed models describe complex systems using laten...
来源: 评论
Denoising Diffusion Models for Anomaly Localization in Medical Images
arXiv
收藏 引用
arXiv 2024年
作者: Bercea, Cosmin I. Cattin, Philippe C. Schnabel, Julia A. Wolleb, Julia School of Computation Information and Technology Technical University of Munich Germany Institute of Machine Learning in Biomedical Imaging and Helmholtz AI Helmholtz Munich Germany Department of Biomedical Engineering University of Basel Allschwil Switzerland Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom
This chapter explores anomaly localization in medical images using denoising diffusion models. After providing a brief methodological background of these models, including their application to image reconstruction and... 详细信息
来源: 评论
Semantic Alignment of Unimodal Medical Text and Vision Representations
arXiv
收藏 引用
arXiv 2025年
作者: Di Folco, Maxime Chan, Emily Hasny, Marta Bercea, Cosmin I. Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Computation Information and Technology Technical University of Munich Germany School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom
General-purpose AI models, particularly those designed for text and vision, demonstrate impressive versatility across a wide range of deep-learning tasks. However, they often underperform in specialised domains like m... 详细信息
来源: 评论
Selective Test-Time Adaptation for Unsupervised Anomaly Detection using Neural Implicit Representations
arXiv
收藏 引用
arXiv 2024年
作者: Ambekar, Sameer Schnabel, Julia A. Bereca, Cosmin School of Computation Information and Technology Technical University of Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Biomedical Engineering and Imaging Sciences King's College London United Kingdom
Deep learning models in medical imaging often encounter challenges when adapting to new clinical settings unseen during training. Test-time adaptation offers a promising approach to optimize models for these unseen do... 详细信息
来源: 评论
DiENTeS: Dynamic ENTity Segmentation with Local-Global Transformers  2nd
DiENTeS: Dynamic ENTity Segmentation with Local-Global Tran...
收藏 引用
2nd International ToothFairy2: Multi-Structure Segmentation in CBCT Volumes, ToothFairy 2024, 3D Teeth Landmarks Detection Challenge, 3DTeethLand 2024, Semi-supervised Teeth Segmentation, STS 2024 held in conjunction with the 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
作者: Daza, Laura Schnabel, Julia Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Neuherberg Germany School of Computation Information and Technology Technical University of Munich Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
Semantic segmentation is crucial for accurately identifying anatomical structures and pathological anomalies in medical images, playing a vital role in diagnostics, treatment planning, and disease progression monitori... 详细信息
来源: 评论
DEALing with Image Reconstruction: Deep Attentive Least Squares
arXiv
收藏 引用
arXiv 2025年
作者: Pourya, Mehrsa Kobler, Erich Unser, Michael Neumayer, Sebastian Biomedical Imaging Group EPFL Lausanne Switzerland Institute for Machine Learning LIT AI lab Institute for Virtual Morphology Johannes Kepler University Linz Austria Faculty of Mathematics TU Chemnitz Germany
State-of-the-art image reconstruction often relies on complex, highly parameterized deep architectures. We propose an alternative: a data-driven reconstruction method inspired by the classic Tikhonov regularization. O... 详细信息
来源: 评论
learning Physics-Inspired Regularization for Medical Image Registration with Hypernetworks
arXiv
收藏 引用
arXiv 2023年
作者: Reithmeir, Anna Schnabel, Julia A. Zimmer, Veronika A. School of Computation Information and Technology Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Neuherberg Germany School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
Medical image registration aims to identify the spatial deformation between images of the same anatomical region and is fundamental to image-based diagnostics and therapy. To date, the majority of the deep learning-ba... 详细信息
来源: 评论
Preface–Introduction to the Special Issue for Chinese-Russian Workshop on Biophotonics and biomedical Optics
收藏 引用
Journal of Innovative Optical Health Sciences 2024年 第5期17卷 1-3页
作者: Tingting Yu Dan Zhu Valery V.Tuchin Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics Advanced Biomedical Imaging FacilityWuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging FacilityHuazhong University of Science and TechnologyWuhan 430074China Department of Optics and Biophotonics Science Medical CenterSaratov State UniversitySaratov 410012Russia Laboratory of Laser Diagnostics of Technical and Living Systems Institute of Precision Mechanics and ControlFRC“Saratov Scientic Centre of the Russian Academy of Sciences”Saratov 410028Russia Laboratory of Laser Molecular Imaging and Machine Learning Tomsk State UniversityTomsk 634050Russia
The Chinese-Russian Workshop on Biophotonics and biomedical Optics 2023 was held online twice on 18–21 September and 25–26 September *** bilateral workshop brought together both Russian and Chinese scientists,engine... 详细信息
来源: 评论
Fair and Private CT Contrast Agent Detection  2nd
Fair and Private CT Contrast Agent Detection
收藏 引用
2nd International Workshop on Fairness of AI in Medical imaging, FAIMI 2024, and 3rd International Workshop on Ethical and Philosophical Issues in Medical imaging, EPIMI 2024, Held in Conjunction with the International Conference on Medical Image Computing and Computer Assisted Interventions, MICCAI 2024
作者: Kaess, Philipp Ziller, Alexander Mantz, Lea Rueckert, Daniel Fintelmann, Florian J. Kaissis, Georgios AI in Healthcare and Medicine Technical University of Munich Munich Germany Department of Radiology Massachusetts General Hospital Boston United States Department of Diagnostic and Interventional Radiology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany Department of Computing Imperial College London London United Kingdom Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany
Intravenous (IV) contrast agents are an established medical tool to enhance the visibility of certain structures. However, their application substantially changes the appearance of Computed Tomography (CT) images, whi... 详细信息
来源: 评论
Bounding Reconstruction Attack Success of Adversaries Without Data Priors
arXiv
收藏 引用
arXiv 2024年
作者: Ziller, Alexander Riess, Anneliese Schwethelm, Kristian Mueller, Tamara T. Rueckert, Daniel Kaissis, Georgios Technical University of Munich Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Neuherberg Germany Department of Computing Imperial College London London United Kingdom
Reconstruction attacks on machine learning (ML) models pose a strong risk of leakage of sensitive data. In specific contexts, an adversary can (almost) perfectly reconstruct training data samples from a trained model ...
来源: 评论