咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 23 篇 会议

馆藏范围

  • 106 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 83 篇 工学
    • 51 篇 生物医学工程(可授...
    • 50 篇 光学工程
    • 41 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 31 篇 生物工程
    • 22 篇 电气工程
    • 20 篇 电子科学与技术(可...
    • 12 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 核科学与技术
    • 3 篇 安全科学与工程
    • 1 篇 仪器科学与技术
  • 56 篇 理学
    • 32 篇 生物学
    • 29 篇 物理学
    • 18 篇 数学
    • 10 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 系统科学
    • 1 篇 大气科学
  • 26 篇 医学
    • 25 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
    • 3 篇 特种医学
    • 3 篇 医学技术(可授医学...
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 5 篇 法学
    • 5 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 7 篇 magnetic resonan...
  • 7 篇 image segmentati...
  • 6 篇 medical imaging
  • 3 篇 cancer
  • 3 篇 deep learning
  • 3 篇 tumors
  • 2 篇 tissue
  • 2 篇 scalability
  • 2 篇 semantic segment...
  • 2 篇 generative adver...
  • 2 篇 pediatrics
  • 2 篇 clinical researc...
  • 2 篇 differential pri...
  • 2 篇 benchmarking
  • 2 篇 pipelines
  • 2 篇 diseases
  • 2 篇 radiotherapy
  • 2 篇 accuracy
  • 2 篇 image reconstruc...
  • 2 篇 standards

机构

  • 16 篇 institute of mac...
  • 15 篇 school of comput...
  • 14 篇 department of co...
  • 14 篇 school of biomed...
  • 10 篇 center for machi...
  • 10 篇 helmholtz ai hel...
  • 9 篇 school of biomed...
  • 9 篇 national biomedi...
  • 9 篇 center for data ...
  • 8 篇 university of pe...
  • 8 篇 institute of mac...
  • 8 篇 beijing internat...
  • 7 篇 lab crestview ra...
  • 7 篇 department of ra...
  • 7 篇 department of ne...
  • 6 篇 sage bionetworks...
  • 6 篇 department of qu...
  • 6 篇 national enginee...
  • 6 篇 mercy catholic m...
  • 6 篇 athinoula a mart...

作者

  • 29 篇 schnabel julia a...
  • 16 篇 rueckert daniel
  • 15 篇 kaissis georgios
  • 9 篇 kofler florian
  • 8 篇 bakas spyridon
  • 8 篇 ezhov ivan
  • 8 篇 linguraru marius...
  • 8 篇 bercea cosmin i.
  • 8 篇 eichhorn hannah
  • 7 篇 li hongwei bran
  • 7 篇 wang chunhao
  • 7 篇 kazerooni anahit...
  • 7 篇 chung verena
  • 7 篇 moawad ahmed w.
  • 7 篇 calabrese evan
  • 7 篇 anazodo udunna
  • 7 篇 piraud marie
  • 7 篇 hammernik kersti...
  • 6 篇 meier zeke
  • 6 篇 dong bin

语言

  • 79 篇 英文
  • 25 篇 其他
  • 2 篇 中文
检索条件"机构=Institute for Machine Learning in Biomedical Imaging"
106 条 记 录,以下是11-20 订阅
排序:
Probabilistic decomposed linear dynamical systems for robust discovery of latent neural dynamics  24
Probabilistic decomposed linear dynamical systems for robust...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Yenho Chen Noga Mudrik Kyle A. Johnsen Sankaraleengam Alagapan Adam S. Charles Christopher J. Rozell Machine Learning Center Georgia Institute of Technology and Coulter Dept. of Biomedical Engineering Emory University and Georgia Institute of Technology Department of Biomedical Engineering Mathematical Institute for Data Science Center for Imaging Science Kavli Neuroscience Discovery Institute Johns Hopkins University Coulter Dept. of Biomedical Engineering Emory University and Georgia Institute of Technology School of Electrical and Computer Engineering Georgia Institute of Technology Machine Learning Center Georgia Institute of Technology and School of Electrical and Computer Engineering Georgia Institute of Technology
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals. For example, switching and decomposed models describe complex systems using laten...
来源: 评论
Cross-Domain and Cross-Dimension learning for Image-to-Graph Transformers
Cross-Domain and Cross-Dimension Learning for Image-to-Graph...
收藏 引用
2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
作者: Berger, Alexander H. Lux, Laurin Shit, Suprosanna Ezhov, Ivan Kaissis, Georgios Menten, Martin J. Rueckert, Daniel Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Germany Department of Computing Imperial College London United Kingdom Munich Germany Institute for Machine Learning in Biomedical Imaging Helmholtz Munich Germany Department of Quantitative Biomedicine University of Zurich Switzerland Weill Cornell Medicine Cornell University New York City United States
Direct image-to-graph transformation is a challenging task that involves solving object detection and relationship prediction in a single model. Due to this task's complexity, large training datasets are rare in m... 详细信息
来源: 评论
Interpretable Representation learning of Cardiac MRI via Attribute Regularization
arXiv
收藏 引用
arXiv 2024年
作者: Di Folco, Maxime Bercea, Cosmin I. Chan, Emily Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany Helmholtz AI Helmholtz Munich Germany School of Computation Information and Technology Technical University of Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom
Interpretability is essential in medical imaging to ensure that clinicians can comprehend and trust artificial intelligence models. Several approaches have been recently considered to encode attributes in the latent s... 详细信息
来源: 评论
Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration
arXiv
收藏 引用
arXiv 2024年
作者: Reithmeir, Anna Felsner, Lina Braren, Rickmer Schnabel, Julia A. Zimmer, Veronika A. School of Computation Information and Technology Technical University of Munich Germany Munich Center for Machine Learning Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Biomedical Engineering and Imaging Sciences King's College London United Kingdom School of Medicine & Health Klinkum Rechts der Isar Technical University of Munich Germany Partner Site Munich Germany
Physics-inspired regularization is desired for intra-patient image registration since it can effectively capture the biomechanical characteristics of anatomical structures. However, a major challenge lies in the relia... 详细信息
来源: 评论
Differentially Private Active learning: Balancing Effective Data Selection and Privacy
Differentially Private Active Learning: Balancing Effective ...
收藏 引用
Secure and Trustworthy machine learning (SaTML), IEEE Conference on
作者: Kristian Schwethelm Johannes Kaiser Jonas Kuntzer Mehmet Yiğitsoy Daniel Rückert Georgios Kaissis Chair for AI in Healthcare and Medicine Technical University of Munich (TUM) and TUM University Hospital Germany deepc GmbH Munich Germany Department of Computing Imperial College London UK Munich Center for Machine Learning (MCML) Germany Institute for Machine Learning in Biomedical Imaging Helmholtz Munich Germany
Active learning (AL) is a widely used technique for optimizing data labeling in machine learning by iteratively selecting, labeling, and training on the most informative data. However, its integration with formal priv... 详细信息
来源: 评论
Advancing Neonatal Care: A Deep learning Approach for Non-Contact Heart Rate Monitoring
Advancing Neonatal Care: A Deep Learning Approach for Non-Co...
收藏 引用
2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024
作者: Grafton, Alex Castelblanco, Alejandra Warnecke, Joana M. Thomson, Lynn Schubert, Benjamin Hilgendorff, Anne Schnabel, Julia A. Lasenby, Joan Beardsall, Kathryn Signal Processing and Communications Laboratory Engineering Department Cambridge University United Kingdom Computational Health Center Helmholtz Munich Germany School of Computation Information and Technology Technical University of Munich Germany University of Cambridge Department of Paediatrics United Kingdom Munich Germany Dr. von Hauner Children’s Hospital Hospital of the Ludwig Maximilian Universität München Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany
Heart rate is an important indicator of newborn health status. Conventional wired heart rate monitoring is affected by motion, can limit parental bonding and is prone to damage the fragile newborn skin. Video-based he... 详细信息
来源: 评论
Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders
arXiv
收藏 引用
arXiv 2024年
作者: Avci, Mehmet Yigit Chan, Emily Zimmer, Veronika Rueckert, Daniel Wiestler, Benedikt Schnabel, Julia A. Bercea, Cosmin I. Technical University of Munich Germany Helmholtz AI Institute of Machine Learning in Biomedical Imaging Munich Germany Klinikum Rechts der Isar Munich Germany Imperial College London United Kingdom School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom
With the increasing incidence of neurodegenerative diseases such as Alzheimer’s Disease (AD), there is a need for further research that enhances detection and monitoring of the diseases. We present MORPHADE (Morpholo... 详细信息
来源: 评论
Physics-Informed Deep learning for Motion-Corrected Reconstruction of Quantitative Brain MRI
arXiv
收藏 引用
arXiv 2024年
作者: Eichhorn, Hannah Spieker, Veronika Hammernik, Kerstin Saks, Elisa Weiss, Kilian Preibisch, Christine Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Germany School of Computation Information & Technology TUM Germany School of Medicine & Health TUM Germany Philips GmbH Market DACH Germany School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom
We propose PHIMO, a physics-informed learning-based motion correction method tailored to quantitative MRI. PHIMO leverages information from the signal evolution to exclude motion-corrupted k-space lines from a data-co... 详细信息
来源: 评论
Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute Regularization Through MRI Domains
arXiv
收藏 引用
arXiv 2023年
作者: Folco, Maxime Di Bercea, Cosmin I. Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Neuherberg Germany Technical University of Munich Munich Germany King’s College London London United Kingdom
Deep generative models have emerged as influential instruments for data generation and manipulation. Enhancing the controllability of these models by selectively modifying data attributes has been a recent focus. Vari... 详细信息
来源: 评论
Sparse annotation strategies for segmentation of short axis cardiac MRI
arXiv
收藏 引用
arXiv 2023年
作者: Stein, Josh Folco, Maxime Di Schnabel, Julia A. Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Neuherberg Germany Technical University of Munich Munich Germany King’s College London London United Kingdom
Short axis cardiac MRI segmentation is a well-researched topic, with excellent results achieved by state-of-the-art models in a supervised setting. However, annotating MRI volumes is time-consuming and expensive. Many... 详细信息
来源: 评论