咨询与建议

限定检索结果

文献类型

  • 919 篇 会议
  • 422 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 1,348 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 471 篇 计算机科学与技术...
    • 413 篇 软件工程
    • 180 篇 信息与通信工程
    • 144 篇 机械工程
    • 126 篇 控制科学与工程
    • 120 篇 光学工程
    • 112 篇 生物医学工程(可授...
    • 94 篇 生物工程
    • 84 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 59 篇 电气工程
    • 41 篇 化学工程与技术
    • 19 篇 交通运输工程
    • 18 篇 力学(可授工学、理...
    • 17 篇 航空宇航科学与技...
    • 15 篇 材料科学与工程(可...
    • 15 篇 土木工程
    • 14 篇 建筑学
  • 459 篇 理学
    • 287 篇 数学
    • 146 篇 物理学
    • 107 篇 生物学
    • 87 篇 统计学(可授理学、...
    • 38 篇 化学
    • 33 篇 系统科学
  • 154 篇 管理学
    • 91 篇 管理科学与工程(可...
    • 68 篇 图书情报与档案管...
  • 71 篇 医学
    • 63 篇 临床医学
    • 49 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
  • 18 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 15 篇 法学
  • 10 篇 农学
  • 8 篇 经济学
  • 6 篇 教育学
  • 4 篇 文学
  • 4 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 153 篇 pattern recognit...
  • 143 篇 image processing
  • 90 篇 image segmentati...
  • 70 篇 feature extracti...
  • 60 篇 shape
  • 53 篇 image reconstruc...
  • 48 篇 computer vision
  • 45 篇 support vector m...
  • 44 篇 cameras
  • 41 篇 robustness
  • 39 篇 image analysis
  • 35 篇 face recognition
  • 34 篇 humans
  • 30 篇 image edge detec...
  • 30 篇 principal compon...
  • 29 篇 pixel
  • 28 篇 data mining
  • 26 篇 image recognitio...
  • 24 篇 object detection
  • 23 篇 layout

机构

  • 260 篇 institute of ima...
  • 241 篇 institute of ima...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 25 篇 institute of ima...
  • 24 篇 institute of med...
  • 21 篇 institute of ima...
  • 19 篇 image processing...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 15 篇 institute for pa...
  • 13 篇 department of au...
  • 13 篇 school of comput...
  • 12 篇 college of compu...
  • 11 篇 the institute of...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 pattern recognit...
  • 9 篇 pattern recognit...
  • 9 篇 institute of ima...

作者

  • 174 篇 yang jie
  • 129 篇 jie yang
  • 57 篇 yuncai liu
  • 52 篇 huang xiaolin
  • 45 篇 pengfei shi
  • 23 篇 zhou yue
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 20 篇 wang lisheng
  • 19 篇 mou xuanqin
  • 19 篇 hong-bin shen
  • 19 篇 杨杰
  • 19 篇 kropatsch walter...
  • 17 篇 xuanqin mou
  • 17 篇 ping guo
  • 17 篇 yue zhou
  • 17 篇 gu yun
  • 16 篇 r. sablatnig
  • 16 篇 yu qiao
  • 16 篇 jian liu

语言

  • 1,279 篇 英文
  • 48 篇 中文
  • 24 篇 其他
检索条件"机构=Institute for Pattern Recognition and Image Processing"
1348 条 记 录,以下是221-230 订阅
排序:
A novel deep structure U-net for sea-land segmentation in remote sensing images
arXiv
收藏 引用
arXiv 2020年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Wang, Ruili Zhou, Huiyu Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China School of Logistics and Transportation Central South University of Forestry and Technology China School of Natural and Computational Sciences Massey University Auckland New Zealand Department of Informatics University of Leicester LeicesterLE1 7RH United Kingdom
Sea-land segmentation is an important process for many key applications in remote sensing. Proper operative sea–land segmentation for remote sensing images remains a challenging issue due to complex and diverse trans... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
COVID-MTL: Multitask learning with shift3D and random-weighted loss for automated diagnosis and severity assessment of COVID-19
arXiv
收藏 引用
arXiv 2020年
作者: Bao, Guoqing Chen, Huai Liu, Tongliang Gong, Guanzhong Yin, Yong Wang, Lisheng Wang, Xiuying School of Computer Science The University of Sydney J12/1 Cleveland St Darlington SydneyNSW2008 Australia Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Department of Radiation Oncology Shandong Cancer Hospital and Institute Shandong First Medical University Shandong Academy of Medical Sciences Jinan250117 China
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19. Radiology and nucleic acid test (NAT) are complementary COVID-19 diagnosis methods. In this paper, we present an e... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Unsupervised Local Discrimination for Medical images
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Huai Wang, Renzhen Wang, Xiuying Li, Jieyu Fang, Qu Li, Hui Bai, Jianhao Peng, Qing Meng, Deyu Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an710049 China The School of Computer Science The University of Sydney SydneyNSW2006 Australia Department of Ophthalmology Shanghai Tenth People’s Hospital Tongji University Shanghai200240 China The Cooperative Medianet Innovation Center Shanghai Jiao Tong University Shanghai200240 China The Changchun GeneScience Pharmaceutical Co. LTD China
Contrastive learning, which aims to capture general representation from unlabeled images to initialize the medical analysis models, has been proven effective in alleviating the high demand for expensive annotations. C... 详细信息
来源: 评论
Alleviating class-wise gradient imbalance for pulmonary airway segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Hao Qin, Yulei Gu, Yun Xie, Fangfang Yang, Jie Sun, Jiayuan Yang, Guang-Zhong Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong Univeristy Shanghai China School of Biomedical Engineering Shanghai Jiao Tong Univeristy Shanghai China Department of Respiratory and Critical Care Medicine Department of Respiratory Endoscopy Shanghai Chest Hospital Shanghai Engineering Research Center of Respiratory Endoscopy Shanghai China
— Automated airway segmentation is a prerequisite for pre-operative diagnosis and intra-operative navigation for pulmonary intervention. Due to the small size and scattered spatial distribution of peripheral bronchi,... 详细信息
来源: 评论
Current Progress and Challenges in Large-scale 3D Mitochondria Instance Segmentation
TechRxiv
收藏 引用
TechRxiv 2023年
作者: Franco-Barranco, Daniel Lin, Zudi Jang, Won-Dong Wang, Xueying Shen, Qijia Yin, Wenjie Fan, Yutian Li, Mingxing Chen, Chang Xiong, Zhiwei Xin, Rui Liu, Hao Chen, Huai Li, Zhili Zhao, Jie Chen, Xuejin Pape, Constantin Conrad, Ryan De Folter, Jozefus Nightingale, Luke Jones, Martin L. Liu, Yanling Ziaei, Dorsa Huschauer, Stephan Arganda-Carreras, Ignacio Pfister, Hanspeter Wei, Donglai The Department of Computer Science and Artificial Intelligence University of the Basque Country Donostia-San Sebastian Spain San Sebastian Spain Ikerbasque Basque Foundation for Science Bilbao Spain Biofisika Institute CSIC UPV/EHU Bilbao Spain Harvard University All-ston MA United States The Department of Molecular and Cellular Biology Harvard University CambridgeMA United States The Wellcome Centre for Integrative Neuroimaging FMRIB Nuffield Department of Clinical Neurosciences University of Oxford Oxford United Kingdom University of Science and Technology of China Anhui China The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai China The National Engineering Laboratory for Brain-inspired Intelligence Technology and Application University of Science and Technology of China Anhui China The Georg-August University Goettingen Germany The Center for Molecular Microscopy Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda United States The Cancer Research Technology Program Frederick National Laboratory for Cancer Research Frederick United States The Francis Crick Institute London United Kingdom The Advanced Biomedical Computational Science Group Frederick National Laboratory for Cancer Research FrederickMD United States The Computer Science Department Boston College Chestnut Hill MA United States
In this paper, we present the results of the MitoEM challenge on mitochondria 3D instance segmentation from electron microscopy images, organized in conjunction with the IEEE-ISBI 2021 conference. Our benchmark datase... 详细信息
来源: 评论
Prediction of σ54 promoters in prokaryotes based on SVM–Adaboost
Prediction of σ54 promoters in prokaryotes based on SVM–Ad...
收藏 引用
Chinese Automation Congress (CAC)
作者: Yongxian Fan Qingqi Zhu Chengwei Lv Xianyong Pan School of Computer and Information Security Guilin University of Electronic Technology Guilin Guangxi Key Laboratory of System Control and Information Processing Ministry of Education of China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
σ 54 promoters are responsible for transcriptional carbon and nitrogen in prokaryotes. However, it is costly and difficult by experimental identification of them, especially in the postgenomic era with avalanche of ... 详细信息
来源: 评论
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
A novel enhancement method for low illumination images based on microarray camera
收藏 引用
Applied Mathematics(A Journal of Chinese Universities) 2017年 第3期32卷 313-322页
作者: ZOU Jian-cheng ZHENG Wen-qi YANG Zhi-hui Institute of Image Processing and Pattern Recognition North China University of Technology Beijing 100144 China.
It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer v... 详细信息
来源: 评论