This paper introduces a new class of switching vector median filter. The proposed algorithm first uses four directional masks to analyze the color difference between the central pixel and its neighborhood pixels in th...
详细信息
ISBN:
(纸本)9780819469502
This paper introduces a new class of switching vector median filter. The proposed algorithm first uses four directional masks to analyze the color difference between the central pixel and its neighborhood pixels in the RGB color space and classify each color pixel into noisy pixel or noise-free one, and then employs the standard vector median filtering operations in the detected noisy locations to restore the corrupted pixels and leave the noise-free ones unchanged. The simulation results show that the proposed method excellently suppresses impulsive noise as well as preserving the image details well, and significantly outperforms the existing vector filtering solutions in terms of both the objective measures and the perceptual visual quality.
A quick 3D needle segmentation algorithm for 3D US data is described in this paper. The algorithm includes the 3D Quick Randomized Hough Transform (3DGHT), which is based on the 3D Randomized Hough Transform and coars...
详细信息
This paper presents a novel color texture-based method for object detection in images. To demonstrate our technique, a vehicle license plate (LP) localization system is developed. A support vector machine (SVM) is use...
详细信息
In this paper, we proposed a robot self position identification method by active sound localization. This method can be used for autonomous security robots working in room environments. A system using a AIBO robot equ...
详细信息
In this paper, we proposed a robot self position identification method by active sound localization. This method can be used for autonomous security robots working in room environments. A system using a AIBO robot equipped with two microphones and wireless network is constructed and is used for position identification experiments. Arrival time differences to the microphones of robot are used as localization cues. To overcome the ambiguity of front-back confusion, a three-head position measurement method was proposed. The robot position can be identified by the intersection of circles restricted by the azimuth differences to different speaker pairs. By localizing three or four speakers as sound beacons positioned on known locations, the robot can identify its self position with an average error of about 7 cm in a 2.5 times 3.0 m 2 working space
This paper addresses the issue of tracking tubular objects, particularly blood vessels from MR images. A model-based approach is adopted. The generalized stochastic tube (GST) model is developed which is an extension ...
详细信息
A model-based approach is used for recognizing arterial blood vessels from MRA volumetric data. The modeling includes (1) a generalized stochastic tube model characterizing the structural properties of the vessels, an...
详细信息
The software systems which are related to national science and technology projects are very crucial. This kind of systems always involves high technical factors and has to spend a large amount of money, so the quality...
详细信息
The software systems which are related to national science and technology projects are very crucial. This kind of systems always involves high technical factors and has to spend a large amount of money, so the quality and reliability of the software deserve to be further studied. Hence, we propose to apply four intelligent classification techniques most used in data mining fields, including Bayesian belief networks (BBN), nearest neighbor (NN), rough set (RS) and decision tree (DT), to validate the usefulness of software metrics for risk prediction. Results show that comparing with metrics such as Lines of code (LOC) and Cyclomatic complexity (V(G)) which are traditionally used for risk prediction, Halstead program difficulty (D), Number of executable statements (EXEC) and Halstead program volume (V) are the more effective metrics as risk predictors. By analyzing obtained results we also found that BBN was more effective than the other three methods in risk prediction.
The thyroid nodule is quickly increasing worldwide and the thyroid ultrasound is the key tool for the diagnosis of it. For the subtle difference between malignant and benign nodules, segmenting lesions is the crucial ...
详细信息
Classification of multi-source remote sensing images has been studied for decades, and many methods have been proposed or improved. Most of these studies focus on how to improve the classifiers in order to obtain high...
详细信息
Classification of multi-source remote sensing images has been studied for decades, and many methods have been proposed or improved. Most of these studies focus on how to improve the classifiers in order to obtain higher classification accuracy. However, as we know, even if the most promising method such as neural network, its performance not only depends on the classifier itself, but also has relation with the training pattern (i.e. features). On consideration of this aspect, we propose an approach to feature selection and classification of multi-source remote sensing images based on Mallat fusion and residual error in this paper. Firstly, the fusion of multi-source images can provide a fused image which is more preferable for classification. And then a featureselection scheme approach based on fused image is proposed, which is to select effective subsets of features as inputs of a classifier by taking into account the residual error associated with each land-cover class. In addition, a classification technique base on selected features by using a feed-forward neural network is investigated. The results of computer experiments carried out on a multisource data set confirm the validity of the proposed approach.
Spectral Angle Mapper (SAM) model has got wide applications in hyperspectral Remote Sensing (RS) information processing. But Spectral Angle couldn't achieve satisfied performance in some cases because of its sensi...
详细信息
Spectral Angle Mapper (SAM) model has got wide applications in hyperspectral Remote Sensing (RS) information processing. But Spectral Angle couldn't achieve satisfied performance in some cases because of its sensitivity to noises and uncertainty. Based on the analysis to traditional SAM algorithm, four types of errors and their impacts to spectral angle are investigated. In order to reduce the impacts of above errors, some improved algorithms are proposed and experimented. The first improved algorithm is grouping spectral angle algorithm. In this new algorithm all bands are divided into two sets by odd and even bands, that means two additional sub-vectors are created in addition to the original spectral vector. So three spectral angles will be computed and the minimum of three indexes is used as final index. The second improved algorithm is normalized spectral angle. In this way spectral angle is computed to the normalized vectors of two original vectors. Two approaches are used to normalize the spectral vector, and spectral angle is computed to the normalized vectors. This algorithm is able to decrease the impacts of random errors. The third algorithm is intersected spectral angle. Spectral angle is calculated by a spectral displacement strategy in this approach. That means a given displacement to change the corresponding bands of two spectral vectors is used and a spectral angle to the displaced vectors will be got. By this displacement strategy the impacts of band offset is reduced. Finally some experiments are used to test those improved algorithms. It proves that those new approaches can reduce and control the errors and improve the precision and reliability of similarity measure.
暂无评论