咨询与建议

限定检索结果

文献类型

  • 909 篇 期刊文献
  • 103 篇 会议

馆藏范围

  • 1,012 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 870 篇 理学
    • 777 篇 物理学
    • 226 篇 数学
    • 92 篇 统计学(可授理学、...
    • 89 篇 化学
    • 41 篇 天文学
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 13 篇 生物学
  • 638 篇 工学
    • 225 篇 计算机科学与技术...
    • 212 篇 电子科学与技术(可...
    • 167 篇 光学工程
    • 162 篇 电气工程
    • 130 篇 材料科学与工程(可...
    • 119 篇 软件工程
    • 104 篇 信息与通信工程
    • 62 篇 力学(可授工学、理...
    • 44 篇 仪器科学与技术
    • 41 篇 冶金工程
    • 39 篇 化学工程与技术
    • 30 篇 控制科学与工程
    • 25 篇 动力工程及工程热...
    • 19 篇 机械工程
    • 19 篇 核科学与技术
    • 13 篇 生物工程
    • 12 篇 土木工程
    • 9 篇 生物医学工程(可授...
  • 40 篇 管理学
    • 34 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
  • 6 篇 医学
  • 4 篇 农学
  • 3 篇 教育学
  • 1 篇 文学

主题

  • 58 篇 quantum entangle...
  • 47 篇 quantum optics
  • 31 篇 qubits
  • 25 篇 quantum cryptogr...
  • 25 篇 quantum communic...
  • 20 篇 photons
  • 19 篇 quantum simulati...
  • 18 篇 quantum algorith...
  • 17 篇 quantum control
  • 17 篇 machine learning
  • 17 篇 quantum theory
  • 17 篇 quantum computat...
  • 16 篇 hamiltonians
  • 14 篇 quantum informat...
  • 13 篇 quantum error co...
  • 13 篇 quantum computer...
  • 12 篇 quantum channels
  • 10 篇 optical quantum ...
  • 9 篇 quantum informat...
  • 9 篇 topological mate...

机构

  • 81 篇 center for quant...
  • 60 篇 shenzhen institu...
  • 54 篇 institute for qu...
  • 48 篇 institute for na...
  • 36 篇 collaborative in...
  • 30 篇 shenzhen institu...
  • 26 篇 centre for quant...
  • 26 篇 optical quantum ...
  • 24 篇 cas key laborato...
  • 23 篇 shanghai researc...
  • 22 篇 department of ph...
  • 22 篇 guangdong provin...
  • 20 篇 aws center for q...
  • 20 篇 guangdong provin...
  • 20 篇 guangdong-hong k...
  • 20 篇 state key labora...
  • 20 篇 international qu...
  • 19 篇 graduate school ...
  • 19 篇 shenzhen institu...
  • 18 篇 department of ap...

作者

  • 26 篇 furusawa akira
  • 25 篇 takase kan
  • 24 篇 endo mamoru
  • 24 篇 asavanant warit
  • 18 篇 terai hirotaka
  • 18 篇 hayashi masahito
  • 18 篇 yabuno masahiro
  • 17 篇 bass c.d.
  • 17 篇 umeki takeshi
  • 16 篇 kyzylova o.
  • 16 篇 qian x.
  • 16 篇 kashiwazaki taka...
  • 16 篇 zeng bei
  • 16 篇 jiang liang
  • 16 篇 miki shigehito
  • 15 篇 larosa j.
  • 15 篇 mueller p.e.
  • 15 篇 bergeron d.e.
  • 15 篇 makarov vadim
  • 14 篇 deichert g.

语言

  • 836 篇 英文
  • 169 篇 其他
  • 7 篇 中文
检索条件"机构=Institute for Quantum Technology and Engineering Computing"
1012 条 记 录,以下是301-310 订阅
排序:
Assessing the source of error in the Thomas-Fermi-von Weizsäcker density functional
arXiv
收藏 引用
arXiv 2023年
作者: Thapa, Bishal Jing, Xin Pask, John E. Suryanarayana, Phanish Mazin, Igor I. Department of Physics and Astronomy George Mason University FairfaxVA22030 United States Quantum Science and Engineering Center George Mason University FairfaxVA22030 United States College of Engineering Georgia Institute of Technology AtlantaGA30332 United States College of Computing Georgia Institute of Technology AtlantaGA30332 United States Physics Division Lawrence Livermore National Laboratory LivermoreCA94550 United States
We investigate the source of error in the Thomas-Fermi-von Weizsäcker (TFW) density functional relative to Kohn-Sham density functional theory (DFT). In particular, through numerical studies on a range of materia... 详细信息
来源: 评论
Tailored XZZX codes for biased noise
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Qian Mannucci, Nam Seif, Alireza Kubica, Aleksander Flammia, Steven T. Jiang, Liang Pritzker School of Molecular Engineering The University of Chicago ChicagoIL60637 United States AWS Center for Quantum Computing PasadenaCA91125 United States California Institute of Technology PasadenaCA91125 United States
quantum error correction (QEC) for generic errors is challenging due to the demanding threshold and resource requirements. Interestingly, when physical noise is biased, we can tailor our QEC schemes to the noise to im... 详细信息
来源: 评论
Preparing quantum States by Measurement-feedback Control with Bayesian Optimization
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Yadong Yao, Juan Zhang, Pengfei Department of Physics Fudan University Shanghai200438 China Fudan University Shanghai200438 China Institute for Nanoelectronic Devices and Quantum Computing Fudan University Shanghai200433 China Shanghai Qi Zhi Institute AI Tower Xuhui District Shanghai200232 China Shenzhen Institute for Quantum Science and Engineering Southern University of Science and Technology Guangdong Shenzhen518055 China International Quantum Academy Guangdong Shenzhen518048 China Guangdong Provincial Key Laboratory ofQuantum Science and Engineering Southern University of Science and Technology Guangdong Shenzhen518055 China Walter Burke Institute for Theoretical Physics Institute for Quantum Information and Matter California Institute of Technology PasadenaCA91125 United States
Preparation of quantum states is of vital importance for performing quantum computations and quantum simulations. In this work, we propose a general framework for preparing ground states of many-body systems by combin... 详细信息
来源: 评论
All-Microwave Manipulation of Superconducting Qubits with a Fixed-Frequency Transmon Coupler
收藏 引用
Physical Review Letters 2023年 第26期130卷 260601-260601页
作者: Shotaro Shirai Yuta Okubo Kohei Matsuura Alto Osada Yasunobu Nakamura Atsushi Noguchi Komaba Institute for Science (KIS) The University of Tokyo Meguro-ku Tokyo 153-8902 Japan Department of Applied Physics Graduate School of Engineering The University of Tokyo Bunkyo-ku Tokyo 113-8656 Japan PRESTO Japan Science and Technology Agency Kawaguchi-shi Saitama 332-0012 Japan RIKEN Center for Quantum Computing (RQC) Wako Saitama 351–0198 Japan Inamori Research Institute for Science (InaRIS) Kyoto-shi Kyoto 600-8411 Japan
All-microwave control of fixed-frequency superconducting quantum computing circuits is advantageous for minimizing the noise channels and wiring costs. Here we introduce a swap interaction between two data transmons a... 详细信息
来源: 评论
An Unbiased quantum Random Number Generator Based on Boson Sampling
arXiv
收藏 引用
arXiv 2022年
作者: Shi, Jinjing Zhao, Tongge Wang, Yizhi Yu, Chunlin Lu, Yuhu Shi, Ronghua Zhang, Shichao Wu, Junjie School of Computer Science and Engineering Central South University Changsha410083 China Institute for Quantum Information State Key Laboratory of High Performance Computing College of Computer Science and Technology National University of Defense Technology Changsha410073 China China Greatwall Quantum Laboratory China Greatwall Technology Group CO. LTD. Changsha410073 China
It has been proven that Boson sampling is a much promising model of optical quantum computation, which has been applied to designing quantum computer successfully, such as "Jiuzhang". However, the meaningful... 详细信息
来源: 评论
Experimental computations of atomic properties on a superconducting quantum processor
收藏 引用
Physical Review A 2024年 第6期110卷 062620-062620页
作者: Akhil Pratap Singh Kenji Sugisaki Srinivasa Prasannaa Bijaya Kumar Sahoo Bhanu Pratap Das Yasunobu Nakamura Department of Applied Physics Graduate School of Engineering The University of Tokyo Bunkyo-ku Tokyo 113-8656 Japan Present address: QCD Labs QTF Centre of Excellence Department of Applied Physics Aalto University P. O. Box 13500 FIN-00076 Aalto Finland. Graduate School of Science and Technology Keio University 7-1 Shinkawasaki Saiwai-ku Kawasaki Kanagawa 212-0032 Japan Quantum Computing Center Keio University 3-14-1 Hiyoshi Kohoku-ku Yokohama Kanagawa 223-8522 Japan Keio University Sustainable Quantum Artificial Intelligence Center (KSQAIC) Keio University 2-15-45 Mita Minato-ku Tokyo 108-8345 Japan Centre for Quantum Engineering Research and Education TCG CREST Sector V Salt Lake Kolkata 700091 India Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India Atomic Molecular and Optical Physics Division Physical Research Laboratory Navrangpura Ahmedabad 380009 India Department of Physics Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8550 Japan RIKEN Center for Quantum Computing (RQC) Wako Saitama 351-0198 Japan
We experimentally compute relativistic and correlation effects in the atomic properties by using a superconducting qubit processor. Specifically, we compute the relativistic ground-state energies and magnetic-dipole h... 详细信息
来源: 评论
Precise quantum Control of Molecular Rotation Toward a Desired Orientation
arXiv
收藏 引用
arXiv 2025年
作者: Hong, Qian-Qian Dong, Daoyi Henriksen, Niels E. Nori, Franco He, Jun Shu, Chuan-Cun Hunan Key Laboratory of Nanophotonics and Devices Hunan Key Laboratory of Super-Microstructure and Ultrafast Process School of Physics Central South University Changsha410083 China Australian Artificial Intelligence Institute Faculty of Engineering and Information Technology University of Technology SydneyNSW2007 Australia Department of Chemistry Technical University of Denmark Building 207 Kongens LyngbyDK-2800 Denmark Quantum Computing Center Theoretical Quantum Physics Laboratory RIKEN Saitama351-0198 Japan Physics Department University of Michigan Ann ArborMI48109 United States
The lack of a direct map between control fields and desired control objectives poses a significant challenge in applying quantum control theory to quantum technologies. Here, we propose an analytical framework to prec... 详细信息
来源: 评论
Observation of giant nonlinear valley Hall effect
arXiv
收藏 引用
arXiv 2025年
作者: He, Pan Zhang, Min Cao, Jin Li, Jingru Liu, Hao Zhai, Jinfeng Wang, Ruibo Xiao, Cong Yang, Shengyuan A. Shen, Jian State Key Laboratory of Surface Physics Institute for Nanoelectronic Devices and Quantum Computing Fudan University Shanghai200433 China Hefei National Laboratory Hefei230088 China Institute of Applied Physics and Materials Engineering Faculty of Science and Technology University of Macau China Fudan University Shanghai200433 China Department of Physics Fudan University Shanghai China Shanghai Research Center for Quantum Sciences Shanghai China Zhangjiang Fudan International Innovation Center Fudan University Shanghai201210 China Collaborative Innovation Center of Advanced Microstructures Nanjing210093 China
The valley Hall effect (VHE) holds great promise for valleytronic applications by leveraging the valley degree of freedom. To date, research on VHE has focused on its linear response to an applied current, leaving non... 详细信息
来源: 评论
Non-Hermitian discrete time crystals
收藏 引用
Physical Review B 2025年 第16期111卷 165117-165117页
作者: Rozhin Yousefjani Angelo Carollo Krzysztof Sacha Saif Al-Kuwari Abolfazl Bayat Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610051 China Qatar Center for Quantum Computing College of Science and Engineering Hamad Bin Khalifa University Doha Qatar Dipartimento di Fisica e Chimica “E. Segrè ” Group of Interdisciplinary Theoretical Physics Universit‘a degli Studi di Palermo I-90128 Palermo Italy Instytut Fizyki Teoretycznej Wydział Fizyki Astronomii i Informatyki Stosowanej Uniwersytet Jagielloński ulica Profesora Stanisława Łojasiewicza 11 PL-30-348 Kraków Poland Centrum Marka Kaca Uniwersytet Jagielloński ulica Profesora Stanisława Łojasiewicza 11 PL-30-348 Kraków Poland Key Laboratory of Quantum Physics and Photonic Quantum Information Ministry of Education University of Electronic Science and Technology of China Chengdu 611731 China
Discrete time crystals (DTCs) exhibit a special nonequilibrium phase of matter in periodically driven many-body systems with spontaneous breaking of time translational symmetry. The presence of decoherence generally e... 详细信息
来源: 评论
Optimal control of linear Gaussian quantum systems via quantum learning control
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Yu-Hong Zeng, Yexiong Tan, Qing-Shou Dong, Daoyi Nori, Franco Liao, Jie-Qiao Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province Department of Physics Synergetic Innovation Center for Quantum Effects and Applications Hunan Normal University Changsha410081 China Theoretical Quantum Physics Laboratory Cluster for Pioneering Research RIKEN Wakoshi Saitama351-0198 Japan Quantum Computing Center RIKEN Wakoshi Saitama351-0198 Japan Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communication College of Physics and Electronics Hunan Institute of Science and Technology Yueyang414000 China School of Engineering and Information Technology University of New South Wales CanberraACT2600 Australia Department of Physics The University of Michigan Ann ArborMI48109-1040 United States Institute of Interdisciplinary Studies Hunan Normal University Changsha410081 China
Efficiently controlling linear Gaussian quantum (LGQ) systems is a significant task in both the study of fundamental quantum theory and the development of modern quantum technology. Here, we propose a general quantum-... 详细信息
来源: 评论