咨询与建议

限定检索结果

文献类型

  • 905 篇 期刊文献
  • 103 篇 会议

馆藏范围

  • 1,008 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 870 篇 理学
    • 777 篇 物理学
    • 225 篇 数学
    • 91 篇 统计学(可授理学、...
    • 89 篇 化学
    • 41 篇 天文学
    • 19 篇 系统科学
    • 14 篇 地球物理学
    • 13 篇 生物学
  • 651 篇 工学
    • 226 篇 计算机科学与技术...
    • 203 篇 电子科学与技术(可...
    • 191 篇 光学工程
    • 152 篇 电气工程
    • 120 篇 材料科学与工程(可...
    • 119 篇 软件工程
    • 104 篇 信息与通信工程
    • 62 篇 力学(可授工学、理...
    • 44 篇 仪器科学与技术
    • 41 篇 冶金工程
    • 39 篇 化学工程与技术
    • 30 篇 控制科学与工程
    • 25 篇 动力工程及工程热...
    • 19 篇 机械工程
    • 18 篇 核科学与技术
    • 13 篇 生物工程
    • 12 篇 土木工程
    • 9 篇 生物医学工程(可授...
  • 40 篇 管理学
    • 34 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 法学
  • 6 篇 医学
  • 4 篇 农学
  • 3 篇 教育学
  • 1 篇 文学

主题

  • 59 篇 quantum entangle...
  • 47 篇 quantum optics
  • 35 篇 qubits
  • 26 篇 quantum cryptogr...
  • 26 篇 quantum communic...
  • 19 篇 quantum simulati...
  • 19 篇 quantum computat...
  • 18 篇 quantum algorith...
  • 18 篇 photons
  • 17 篇 quantum control
  • 17 篇 hamiltonians
  • 17 篇 machine learning
  • 16 篇 quantum theory
  • 14 篇 quantum informat...
  • 13 篇 quantum error co...
  • 13 篇 quantum computer...
  • 12 篇 quantum channels
  • 10 篇 quantum computin...
  • 10 篇 quantum gates
  • 10 篇 optical quantum ...

机构

  • 80 篇 center for quant...
  • 60 篇 shenzhen institu...
  • 54 篇 institute for qu...
  • 48 篇 institute for na...
  • 36 篇 collaborative in...
  • 30 篇 shenzhen institu...
  • 26 篇 optical quantum ...
  • 25 篇 centre for quant...
  • 24 篇 cas key laborato...
  • 23 篇 shanghai researc...
  • 22 篇 department of ph...
  • 22 篇 guangdong provin...
  • 20 篇 aws center for q...
  • 20 篇 guangdong provin...
  • 20 篇 guangdong-hong k...
  • 20 篇 state key labora...
  • 20 篇 international qu...
  • 19 篇 graduate school ...
  • 19 篇 shenzhen institu...
  • 18 篇 department of ap...

作者

  • 26 篇 furusawa akira
  • 25 篇 takase kan
  • 24 篇 endo mamoru
  • 24 篇 asavanant warit
  • 18 篇 terai hirotaka
  • 18 篇 hayashi masahito
  • 18 篇 yabuno masahiro
  • 17 篇 bass c.d.
  • 17 篇 umeki takeshi
  • 16 篇 kyzylova o.
  • 16 篇 qian x.
  • 16 篇 kashiwazaki taka...
  • 16 篇 zeng bei
  • 16 篇 jiang liang
  • 16 篇 miki shigehito
  • 15 篇 larosa j.
  • 15 篇 mueller p.e.
  • 15 篇 bergeron d.e.
  • 15 篇 makarov vadim
  • 14 篇 deichert g.

语言

  • 917 篇 英文
  • 84 篇 其他
  • 7 篇 中文
检索条件"机构=Institute for Quantum Technology and Engineering Computing"
1008 条 记 录,以下是881-890 订阅
排序:
The quantum entanglement of measurement
The quantum entanglement of measurement
收藏 引用
Frontiers in Optics, FiO 2017
作者: Yokoyama, Shota Pozza, Nicola Dalla Serikawa, Takahiro Kuntz, Katanya B. Wheatley, Trevor A. Dong, Daoyi Huntington, Elanor H. Yonezawa, Hidehiro School of Engineering and Information Technology The University of New South Wales CanberraACT2600 Australia Centre for Quantum Computation and Communication Technology Australian Research Council Australia Department of Applied Physics School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo113-8656 Japan Institute for Quantum Computing University of Waterloo WaterlooONN2L 3G1 Canada Research School of Engineering College of Engineering and Computer Science Australian National University CanberraACT2600 Australia
We demonstrate two-mode detector tomography on a detector consisting of two superconducting nanowire single photon detectors. The entangling properties of the detector is verified through a new entanglement measure of... 详细信息
来源: 评论
Noise subtraction from KAGRA O3GK data using Independent Component Analysis
收藏 引用
Classical and quantum Gravity 2023年 第8期40卷 085015-085015页
作者: H Abe T Akutsu M Ando A Araya N Aritomi H Asada Y Aso S Bae Y Bae R Bajpai K Cannon Z Cao E Capocasa M Chan C Chen D Chen K Chen Y Chen C-Y Chiang Y-K Chu S Eguchi M Eisenmann Y Enomoto R Flaminio H K Fong Y Fujii Y Fujikawa Y Fujimoto I Fukunaga D Gao G-G Ge S Ha I P W Hadiputrawan S Haino W-B Han K Hasegawa K Hattori H Hayakawa K Hayama Y Himemoto N Hirata C Hirose T-C Ho B-H Hsieh H-F Hsieh C Hsiung H-Y Huang P Huang Y-C Huang Y-J Huang D C Y Hui S Ide K Inayoshi Y Inoue K Ito Y Itoh C Jeon H-B Jin K Jung P Jung K Kaihotsu T Kajita M Kakizaki M Kamiizumi N Kanda T Kato K Kawaguchi C Kim J Kim J C Kim Y-M Kim N Kimura T Kiyota Y Kobayashi K Kohri K Kokeyama A K H Kong N Koyama C Kozakai J Kume Y Kuromiya S Kuroyanagi K Kwak E Lee H W Lee R Lee M Leonardi K L Li P Li L C -C Lin C-Y Lin E T Lin F-K Lin F-L Lin H L Lin G C Liu L-W Luo M Ma’arif E Majorana Y Michimura N Mio O Miyakawa K Miyo S Miyoki Y Mori S Morisaki N Morisue Y Moriwaki K Nagano K Nakamura H Nakano M Nakano Y Nakayama T Narikawa L Naticchioni L Nguyen Quynh W-T Ni T Nishimoto A Nishizawa S Nozaki Y Obayashi W Ogaki J J Oh K Oh M Ohashi T Ohashi M Ohkawa H Ohta Y Okutani K Oohara S Oshino S Otabe K-C Pan A Parisi J Park F E Pe na Arellano S Saha Y Saito K Sakai T Sawada Y Sekiguchi L Shao Y Shikano H Shimizu K Shimode H Shinkai T Shishido A Shoda K Somiya I Song R Sugimoto J Suresh T Suzuki H Tagoshi H Takahashi R Takahashi S Takano H Takeda M Takeda K Tanaka T Tanaka S Tanioka A Taruya T Tomaru T Tomura L Trozzo T Tsang J-S Tsao S Tsuchida T Tsutsui D Tuyenbayev N Uchikata T Uchiyama A Ueda T Uehara K Ueno G Ueshima T Ushiba M H P M van Putten J Wang T Washimi C Wu H Wu T Yamada K Yamamoto T Yamamoto K Yamashita R Yamazaki Y Yang S Yeh J Yokoyama T Yokozawa T Yoshioka H Yuzurihara S Zeidler M Zhan H Zhang Y Zhao Z-H Zhu The KAGRA Collaboration Graduate School of Science Tokyo Institute of Technology Meguro-ku Tokyo 152-8551 Japan Gravitational Wave Science Project National Astronomical Observatory of Japan (NAOJ) Mitaka City Tokyo 181-8588 Japan Advanced Technology Center National Astronomical Observatory of Japan (NAOJ) Mitaka City Tokyo 181-8588 Japan Department of Physics The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan Research Center for the Early Universe (RESCEU) The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan Earthquake Research Institute The University of Tokyo Bunkyo-ku Tokyo 113-0032 Japan Department of Mathematics and Physics Gravitational Wave Science Project Hirosaki University Hirosaki City Aomori 036-8561 Japan Kamioka Branch National Astronomical Observatory of Japan (NAOJ) Kamioka-cho Hida City Gifu 506-1205 Japan The Graduate University for Advanced Studies (SOKENDAI) Mitaka City Tokyo 181-8588 Japan Korea Institute of Science and Technology Information (KISTI) Yuseong-gu Daejeon 34141 Republic of Korea National Institute for Mathematical Sciences Yuseong-gu Daejeon 34047 Republic of Korea School of High Energy Accelerator Science The Graduate University for Advanced Studies (SOKENDAI) Tsukuba City Ibaraki 305-0801 Japan Department of Astronomy Beijing Normal University Beijing 100875 People’s Republic of China Department of Applied Physics Fukuoka University Jonan Fukuoka City Fukuoka 814-0180 Japan Department of Physics Tamkang University Danshui Dist. New Taipei City 25137 Taiwan Department of Physics and Institute of Astronomy National Tsing Hua University Hsinchu 30013 Taiwan Department of Physics Center for High Energy and High Field Physics National Central University Zhongli District Taoyuan City 32001 Taiwan Department of Physics National Tsing Hua University Hsinchu 30013 Taiwan Institute of Physics Academia Sinica Nankang Taipei 11529 Taiwan Univ. Grenoble Alpes Laboratoire d’Annecy de Physique des Particules (LAPP) Université Savoie M
During April 7–21 2020, KAGRA conducted its first scientific observation in conjunction with the GEO600 detector. The dominant noise sources during this run were found to be suspension control noise in the low-freque...
来源: 评论
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
收藏 引用
Astrophysical Journal, Supplement Series 2023年 第2期267卷 29-29页
作者: Abbott, R. Abe, H. Acernese, F. Ackley, K. Adhicary, S. Adhikari, N. Adhikari, R.X. Adkins, V.K. Adya, V.B. Affeldt, C. Agarwal, D. Agathos, M. Aguiar, O.D. Aiello, L. Ain, A. Ajith, P. Akutsu, T. Albanesi, S. Alfaidi, R.A. Al-Jodah, A. Alléné, C. Allocca, A. Almualla, M. Altin, P.A. Amato, A. Amez-Droz, L. Amorosi, A. Anand, S. Ananyeva, A. Andersen, R. Anderson, S.B. Anderson, W.G. Andia, M. Ando, M. Andrade, T. Andres, N. Andrés-Carcasona, M. Andrić, T. Ansoldi, S. Antelis, J.M. Antier, S. Aoumi, M. Apostolatos, T. Appavuravther, E.Z. Appert, S. Apple, S.K. Arai, K. Araya, A. Araya, M.C. Areeda, J.S. Arène, M. Aritomi, N. Arnaud, N. Arogeti, M. Aronson, S.M. Arun, K.G. Asada, H. Ashton, G. Aso, Y. Assiduo, M. Assis de Souza Melo, S. Aston, S.M. Astone, P. Aubin, F. AultONeal, K. Babak, S. Badalyan, A. Badaracco, F. Badger, C. Bae, S. Bagnasco, S. Bai, Y. Baier, J.G. Baiotti, L. Baird, J. Bajpai, R. Baka, T. Ball, M. Ballardin, G. Ballmer, S.W. Baltus, G. Banagiri, S. Banerjee, B. Bankar, D. Baral, P. Barayoga, J.C. Barber, J. Barish, B.C. Barker, D. Barneo, P. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Barthelmy, S.D. Barton, M.A. Bartos, I. Basak, S. Basalaev, A. Bassiri, R. Basti, A. Bawaj, M. Bayley, J.C. Baylor, A.C. Bazzan, M. Bécsy, B. Bedakihale, V.M. Beirnaert, F. Bejger, M. Bell, A.S. Benedetto, V. Beniwal, D. Benoit, W. Bentley, J.D. Ben Yaala, M. Bera, S. Berbel, M. Bergamin, F. Berger, B.K. Bernuzzi, S. Beroiz, M. Berry, C.P.L. Bersanetti, D. Bertolini, A. Betzwieser, J. Beveridge, D. Bevins, N. Bhandare, R. Bhandari, A.V. Bhardwaj, U. Bhatt, R. Bhattacharjee, D. Bhaumik, S. Bianchi, A. Bilenko, I.A. Bilicki, M. Billingsley, G. Bini, S. Birnholtz, O. Biscans, S. Bischi, M. Biscoveanu, S. Bisht, A. Biswas, B. Bitossi, M. Bizouard, M.-A. Blackburn, J.K. Blair, C.D. Blair, D.G. Blair, R.M. Bobba, F. Bode, N. Boër, M. Bogaert, G. Boileau, G. Boldrini, M. Bolingbroke, G.N. Bonavena, L.D. Bondarescu, R. Bondu, F. Bonilla, E. Bonilla, G.S. Bonnand, R. Booker, P. Bork, R. Boschi, V. Bose, N. LIGO Laboratory California Institute of Technology Pasadena 91125 CA United States Graduate School of Science Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan Dipartimento di Farmacia Università di Salerno Salerno Fisciano I-84084 Italy INFN Sezione di Napoli Napoli I-80126 Italy OzGrav School of Physics & Astronomy Monash University Clayton 3800 VIC Australia The Pennsylvania State University University Park 16802 PA United States University of Wisconsin-Milwaukee Milwaukee 53201 WI United States Louisiana State University Baton Rouge 70803 LA United States OzGrav Australian National University Canberra 0200 ACT Australia Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Hannover D-30167 Germany Leibniz Universität Hannover Hannover D-30167 Germany Inter-University Centre for Astronomy and Astrophysics Pune 411007 India University of Cambridge Cambridge CB2 1TN United Kingdom Instituto Nacional de Pesquisas Espaciais São Paulo São José dos Campos 12227-010 Brazil Cardiff University Cardiff CF24 3AA United Kingdom INFN Sezione di Pisa Pisa I-56127 Italy International Centre for Theoretical Sciences Tata Institute of Fundamental Research Bengaluru 560089 India Gravitational Wave Science Project National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan Advanced Technology Center National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan Dipartimento di Fisica Università degli Studi di Torino Torino I-10125 Italy INFN Sezione di Torino Torino I-10125 Italy SUPA University of Glasgow Glasgow G12 8QQ United Kingdom OzGrav University of Western Australia Crawley 6009 WA Australia Univ. Savoie Mont Blanc CNRS Laboratoire d'Annecy de Physique des Particules - IN2P3 Annecy F-74000 France Università di Napoli “Federico II” Napoli I-80126 Italy University of Minnesota Minneapolis 55455 MN United States M
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3,...
来源: 评论
Towards the manipulation of topological states of matter: A perspective from electron transport
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Cheng Lu, Hai-Zhou Shen, Shun-Qing Chen, Yong P. Xiu, Faxian State Key Laboratory of Surface Physics and Department of Physics Fudan University Shanghai200433 China Collaborative Innovation Center of Advanced Microstructures Nanjing210093 China Institute for Quantum Science and Engineering Department of Physics South University of Science and Technology of China Shenzhen518055 China Shenzhen Key Laboratory of Quantum Science and Engineering Shenzhen518055 China Department of Physics University of Hong Kong Pokfulam Road Hong Kong Department of Physics and Astronomy Purdue University West LafayetteIN47907 United States Birck Nanotechnology Center Purdue University West LafayetteIN47907 United States School of Electrical and Computer Engineering Purdue University West LafayetteIN47907 United States Institute for Nanoelectronic Devices and Quantum Computing Fudan University Shanghai200433 China
The introduction of topological invariants, ranging from insulators to metals, has provided new insights into the traditional classification of electronic states in condensed matter physics. A sudden change in the top... 详细信息
来源: 评论
Efficient verification of pure quantum states with applications to hypergraph states
arXiv
收藏 引用
arXiv 2018年
作者: Zhu, Huangjun Hayashi, Masahito Department of Physics and Center for Field Theory and Particle Physics Fudan University Shanghai200433 China State Key Laboratory of Surface Physics Fudan University Shanghai200433 China Institute for Nanoelectronic Devices and Quantum Computing Fudan University Shanghai200433 China Collaborative Innovation Center of Advanced Microstructures Nanjing210093 China Institute for Theoretical Physics University of Cologne Cologne50937 Germany Graduate School of Mathematics Nagoya University Nagoya464-8602 Japan Shenzhen Institute for Quantum Science and Engineering Southern University of Science and Technology Shenzhen518055 China Centre for Quantum Technologies National University of Singapore 3 Science Drive 2 Singapore117542 Singapore
Bipartite and multipartite entangled states are of central interest in quantum information processing and foundational studies. Efficient verification of these states, especially in the adversarial scenario, is a key ... 详细信息
来源: 评论
Security proof framework for two-way Gaussian quantum key distribution protocols
arXiv
收藏 引用
arXiv 2018年
作者: Zhuang, Quntao Zhang, Zheshen Lutkenhaus, Norbert Shapiro, Jeffrey H. Research Laboratory of Electronics Massachusetts Institute of Technology CambridgeMA02139 United States Department of Physics Massachusetts Institute of Technology CambridgeMA02139 United States Department of Materials Science and Engineering University of Arizona TucsonAZ85721 United States Perimeter Institute for Theoretical Physics 31 Caroline St N WaterlooONN2L 2Y5 Canada Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo WaterlooONN2L 3G1 Canada
Two-way Gaussian protocols have the potential to increase quantum key distribution (QKD) protocols' secret-key rates by orders of magnitudes [Phys. Rev. A 94, 012322 (2016)]. Security proofs for two-way protocols,... 详细信息
来源: 评论
Observation of quantum zeno blockade on chip
arXiv
收藏 引用
arXiv 2017年
作者: Chen, Jia-Yang Sua, Yong Meng Zhao, Zi-Tong Li, Mo Huang, Yu-Ping Department of Physics and Engineering Physics Stevens Institute of Technology HobokenNJ07030 United States Center for Distributed Quantum Computing Stevens Institute of Technology HobokenNJ07030 United States
When overlapping in an optical medium with nonlinear susceptibility, light waves can interact with each other, changing their phases, wavelengths, shapes, and so on. Such nonlinear effects, discovered over a half cent... 详细信息
来源: 评论
Large-scale silicon quantum photonics implementing arbitrary two-qubit processing
arXiv
收藏 引用
arXiv 2018年
作者: Qiang, Xiaogang Zhou, Xiaoqi Wang, Jianwei Wilkes, Callum M. Loke, Thomas O'Gara, Sean Kling, Laurent Marshall, Graham D. Santagati, Raffaele Ralph, Timothy C. Wang, Jingbo B. O'Brien, Jeremy L. Thompson, Mark G. Matthews, Jonathan C.F. Quantum Engineering Technology Labs H. H. Wills Physics Laboratory Department of Electrical & Electronic Engineering University of Bristol BS8 1FD United Kingdom State Key Laboratory of High Performance Computing NUDT Changsha410073 China National Innovation Institute of Defense Technology AMS Beijing100071 China State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat-sen University Guangzhou510275 China State Key Laboratory for Mesoscopic Physics Collaborative Innovation Centre of Quantum Matter School of Physics Peking University Beijing100871 China School of Physics University of Western Australia Crawley WA6009 Australia Centre for Quantum Computation and Communication Technology School of Mathematics and Physics University of Queensland BrisbaneQLD4072 Australia
Integrated optics is an engineering solution proposed for exquisite control of photonic quantum information. Here we use silicon photonics and the linear combination of quantum operators scheme to realise a fully prog... 详细信息
来源: 评论
Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity
收藏 引用
Physical Review Applied 2018年 第4期10卷 044019-044019页
作者: C. W. Sandbo Chang M. Simoen José Aumentado Carlos Sabín P. Forn-Díaz A. M. Vadiraj Fernando Quijandría G. Johansson I. Fuentes C. M. Wilson Institute for Quantum Computing and Electrical and Computer Engineering Department University of Waterloo 200 University Ave West Waterloo Ontario N2L 3G1 Canada MC2 Chalmers University of Technology SE-41296 Göteborg Sweden National Institute of Standards and Technology 325 Broadway Boulder Colorado 80305 USA Instituto de Física Fundamental CSIC Serrano 113-bis 28006 Madrid Spain School of Mathematical Sciences University of Nottingham Nottingham NG7 2RD United Kingdom Faculty of Physics University of Vienna Boltzmanngasse 5 1090 Vienna Austria
We demonstrate the generation of multimode entangled states of propagating microwaves. The entangled states are generated by our parametrically pumping a multimode superconducting cavity. By combining different pump f... 详细信息
来源: 评论
Rotation-Symmetry-Enforced Coupling of Spin and Angular Momentum for p-Orbital Bosons
收藏 引用
Physical Review Letters 2018年 第9期121卷 093401-093401页
作者: Yongqiang Li Jianmin Yuan Andreas Hemmerich Xiaopeng Li Department of Physics National University of Defense Technology Changsha 410073 People’s Republic of China Department of Physics Graduate School of China Academy of Engineering Physics Beijing 100193 People’s Republic of China Institut für Laser-Physik Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany State Key Laboratory of Surface Physics Institute of Nanoelectronics and Quantum Computing and Department of Physics Fudan University Shanghai 200433 China Collaborative Innovation Center of Advanced Microstructures Nanjing 210093 China
Intrinsic spin angular-momentum coupling of an electron has a relativistic quantum origin with the coupling arising from charged orbits, which does not carry over to charge-neutral atoms. Here, we propose a mechanism ... 详细信息
来源: 评论