咨询与建议

限定检索结果

文献类型

  • 1,631 篇 会议
  • 1,435 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 3,109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,918 篇 工学
    • 1,227 篇 计算机科学与技术...
    • 1,007 篇 软件工程
    • 533 篇 控制科学与工程
    • 312 篇 信息与通信工程
    • 251 篇 生物工程
    • 214 篇 机械工程
    • 203 篇 生物医学工程(可授...
    • 199 篇 电气工程
    • 140 篇 电子科学与技术(可...
    • 134 篇 光学工程
    • 108 篇 仪器科学与技术
    • 77 篇 化学工程与技术
    • 66 篇 力学(可授工学、理...
    • 62 篇 材料科学与工程(可...
    • 62 篇 安全科学与工程
    • 60 篇 交通运输工程
    • 59 篇 建筑学
  • 1,061 篇 理学
    • 550 篇 数学
    • 273 篇 生物学
    • 270 篇 物理学
    • 207 篇 统计学(可授理学、...
    • 164 篇 系统科学
    • 76 篇 化学
  • 418 篇 管理学
    • 265 篇 管理科学与工程(可...
    • 162 篇 图书情报与档案管...
    • 113 篇 工商管理
  • 180 篇 医学
    • 156 篇 临床医学
    • 127 篇 基础医学(可授医学...
    • 95 篇 药学(可授医学、理...
  • 69 篇 法学
    • 64 篇 社会学
  • 41 篇 教育学
  • 31 篇 经济学
  • 30 篇 农学
  • 10 篇 文学
  • 1 篇 哲学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 141 篇 intelligent robo...
  • 96 篇 intelligent syst...
  • 81 篇 computer science
  • 81 篇 robot sensing sy...
  • 73 篇 artificial intel...
  • 70 篇 machine learning
  • 57 篇 mobile robots
  • 56 篇 feature extracti...
  • 55 篇 reinforcement le...
  • 55 篇 control systems
  • 50 篇 robots
  • 48 篇 deep learning
  • 48 篇 neural networks
  • 44 篇 training
  • 42 篇 cameras
  • 42 篇 navigation
  • 42 篇 robotics and aut...
  • 41 篇 semantics
  • 41 篇 humans
  • 40 篇 robot kinematics

机构

  • 103 篇 max planck insti...
  • 45 篇 department of co...
  • 37 篇 department of co...
  • 32 篇 mpi for intellig...
  • 32 篇 google
  • 28 篇 institute for ar...
  • 28 篇 university of ch...
  • 27 篇 state key lab on...
  • 26 篇 max planck insti...
  • 25 篇 department of co...
  • 22 篇 institutes for r...
  • 21 篇 research institu...
  • 20 篇 department of el...
  • 20 篇 state key labora...
  • 17 篇 ieee
  • 16 篇 department of co...
  • 15 篇 institute for in...
  • 14 篇 shenzhen institu...
  • 13 篇 center for fuzzy...
  • 13 篇 shanghai researc...

作者

  • 47 篇 sun maosong
  • 43 篇 schölkopf bernha...
  • 42 篇 rus vasile
  • 40 篇 bernhard schölko...
  • 32 篇 liu zhiyuan
  • 32 篇 kevin murphy
  • 31 篇 huang minlie
  • 26 篇 peters jan
  • 22 篇 behnke sven
  • 19 篇 carlos silvestre
  • 18 篇 hu xiaolin
  • 18 篇 martius georg
  • 18 篇 franklin stan
  • 17 篇 g.a. bekey
  • 17 篇 su kaile
  • 16 篇 banjade rajendra
  • 16 篇 liu jiang
  • 16 篇 locatello france...
  • 16 篇 bauer stefan
  • 16 篇 dimitrios i. fot...

语言

  • 2,906 篇 英文
  • 180 篇 其他
  • 22 篇 中文
  • 1 篇 日文
检索条件"机构=Institute for Robotics and Intelligent Systems Computer Science Department"
3109 条 记 录,以下是371-380 订阅
排序:
Detecting Worker Attention Lapses in Human-Robot Interaction: An Eye Tracking and Multimodal Sensing Study  28
Detecting Worker Attention Lapses in Human-Robot Interaction...
收藏 引用
28th International Conference on Automation and Computing, ICAC 2023
作者: Dai, Zhuangzhuang Park, Jinha Kaszowska, Aleksandra Li, Chen School of Engineering and Applied Science Aston University Dept. of Computer Science Engineering and Physical Science BirminghamB4 7ET United Kingdom The Maersk Mc Kinney Moller Institute University of Southern Denmark Sdu Robotics Odense5230 Denmark Aalborg University Department of Electronic Systems Aalborg9220 Denmark Aalborg University The Department of Materials and Production Aalborg9220 Denmark
The advent of industrial robotics and autonomous systems endow human-robot collaboration in a massive scale. However, current industrial robots are restrained in co-working with human in close proximity due to inabili... 详细信息
来源: 评论
Causal normalizing flows: from theory to practice  23
Causal normalizing flows: from theory to practice
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing systems
作者: Adrián Javaloy Pablo Sánchez-Martín Isabel Valera Department of Computer Science of Saarland University Saarbrücken Germany Department of Computer Science of Saarland University Saarbrücken Germany and Max Planck Institute for Intelligent Systems Tübingen Germany Department of Computer Science of Saarland University Saarbrücken Germany and Max Planck Institute for Software Systems Saarbrücken Germany
In this work, we deepen on the use of normalizing flows for causal inference. Specifically, we first leverage recent results on non-linear ICA to show that causal models are identifiable from observational data given ...
来源: 评论
GSLB: The Graph Structure Learning Benchmark  37
GSLB: The Graph Structure Learning Benchmark
收藏 引用
37th Conference on Neural Information Processing systems, NeurIPS 2023
作者: Li, Zhixun Wang, Liang Sun, Xin Luo, Yifan Zhu, Yanqiao Chen, Dingshuo Luo, Yingtao Zhou, Xiangxin Liu, Qiang Wu, Shu Yu, Jeffrey Xu Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Hong Kong Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Department of Automation University of Science and Technology of China China School of Cyberspace Security Beijing University of Posts and Telecommunications China Department of Computer Science University of California Los Angeles United States Heinz College of Information Systems and Public Policy Machine Learning Department School of Computer Science Carnegie Mellon University United States
Graph Structure Learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despit... 详细信息
来源: 评论
Human-centered AI and robotics
收藏 引用
AI Perspectives 2022年 第1期4卷 1-14页
作者: Doncieux, Stephane Chatila, Raja Straube, Sirko Kirchner, Frank Institute of Intelligent Systems and Robotics (ISIR) Sorbonne Université CNRS Paris France Robotics Innovation Center DFKI GmbH (German Research Center for Artificial Intelligence) Bremen Germany Faculty of Mathematics and Computer Science Robotics Group University of Bremen Bremen Germany
robotics has a special place in AI as robots are connected to the real world and robots increasingly appear in humans everyday environment, from home to industry. Apart from cases were robots are expected to completel...
来源: 评论
A New Application of Machine Learning: Detecting Errors in Network Simulations  22
A New Application of Machine Learning: Detecting Errors in N...
收藏 引用
Proceedings of the Winter Simulation Conference
作者: Maciej K. Wozniak Luke Liang Hieu Phan Philippe J. Giabbanelli Department of Intelligent Systems KTH Royal Institute of Technology Stockholm SWEDEN Department of Computer Science & Software Engineering Miami University Oxford OH USA
After designing a simulation and running it locally on a small network instance, the implementation can be scaled-up via parallel and distributed computing (e.g., a cluster) to cope with massive networks. However, imp...
来源: 评论
Online Multi-Contact Feedback Model Predictive Control for Interactive Robotic Tasks
Online Multi-Contact Feedback Model Predictive Control for I...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Seo Wook Han Maged Iskandar Jinoh Lee Min Jun Kim Intelligent Robotic Systems Laboratory Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea Institute of Robotics and Mechatronics German Aerospace Center (DLR) Wessling Germany Department of Mechanical Engineering KAIST Daejeon Republic of Korea
In this paper, we propose a model predictive control (MPC) that accomplishes interactive robotic tasks, in which multiple contacts may occur at unknown locations. To address such scenarios, we made an explicit contact... 详细信息
来源: 评论
Colored Noise in PPO: Improved Exploration and Performance through Correlated Action Sampling
arXiv
收藏 引用
arXiv 2023年
作者: Hollenstein, Jakob Martius, Georg Piater, Justus Department of Computer Science University of Innsbruck Austria Digital Science Center University of Innsbruck Austria Max Planck Institute for Intelligent Systems Tübingen Germany Department of Computer Science University of Tübingen Germany
Proximal Policy Optimization (PPO), a popular on-policy deep reinforcement learning method, employs a stochastic policy for exploration. In this paper, we propose a colored noise-based stochastic policy variant of PPO... 详细信息
来源: 评论
Deep Image Clustering by Spiking Neural Networks
Deep Image Clustering by Spiking Neural Networks
收藏 引用
Applied Imagery Pattern Recognition Workshop (AIPR)
作者: Arash Mahyari Hadi AliAkbarpour Florida Institute For Human and Machine Cognition (IHMC) Pensacola FL USA Department of Intelligent Systems and Robotics University of West Florida Pensacola FL USA Department of Computer Science Saint Louis University St. Louis MO USA
Neuromorphic cameras, or event cameras, are biologically-inspired sensors that detect changes in illumination at a pixel level, different from traditional cameras where each pixel independently and asynchronously outp...
来源: 评论
Generalized Interpolating Discrete Diffusion
arXiv
收藏 引用
arXiv 2025年
作者: Rütte, Dimitri Von Fluri, Janis Ding, Yuhui Orvieto, Antonio Schölkopf, Bernhard Hofmann, Thomas Data Analytics Lab Department of Computer Science ETH Zurich Switzerland ELLIS Institute Tübingen Tübingen AI Center Germany Max Planck Institute for Intelligent Systems Tübingen Germany
While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration o... 详细信息
来源: 评论
Exploring the Potential of LLM-based Chatbots for Task Scheduling in Robot Operations
Exploring the Potential of LLM-based Chatbots for Task Sched...
收藏 引用
IEEE International Conference on Autonomous Robot systems and Competitions (ICARSC)
作者: Catarina Rema Armando Sousa Heber Sobreira Pedro Costa Manuel F. Silva CRIIS - Centre for Robotics in Industry and Intelligent Systems INESC TEC - Institute for Systems and Computer Engineering Technology and Science Porto Portugal Faculty of Engineering University of Porto (FEUP) Porto Portugal ISEP Polytechnic of Porto rua Dr. António Bernardino de Almeida Porto Portugal
The rise of Industry 4.0 has revolutionized manufacturing by integrating real-time data analysis, artificial intelligence (AI), automation, and interconnected systems, enabling adaptive and resilient smart factories. ... 详细信息
来源: 评论