咨询与建议

限定检索结果

文献类型

  • 108 篇 会议
  • 75 篇 期刊文献

馆藏范围

  • 183 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 136 篇 工学
    • 57 篇 信息与通信工程
    • 54 篇 计算机科学与技术...
    • 46 篇 软件工程
    • 43 篇 生物工程
    • 31 篇 电子科学与技术(可...
    • 26 篇 电气工程
    • 23 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 14 篇 控制科学与工程
    • 7 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 4 篇 交通运输工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 冶金工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
  • 77 篇 理学
    • 43 篇 生物学
    • 28 篇 物理学
    • 19 篇 数学
    • 15 篇 系统科学
    • 11 篇 统计学(可授理学、...
    • 3 篇 化学
  • 24 篇 管理学
    • 17 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 1 篇 法学

主题

  • 19 篇 magnetic resonan...
  • 15 篇 estimation
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 image segmentati...
  • 10 篇 three-dimensiona...
  • 10 篇 radar
  • 8 篇 deep neural netw...
  • 8 篇 signal processin...
  • 7 篇 task analysis
  • 7 篇 neural networks
  • 7 篇 magnetic resonan...
  • 6 篇 feature extracti...
  • 6 篇 machine learning
  • 6 篇 signal processin...
  • 6 篇 radar antennas
  • 5 篇 mimo radar
  • 5 篇 visualization
  • 5 篇 semantics
  • 5 篇 ofdm

机构

  • 72 篇 institute of sig...
  • 44 篇 institute of sig...
  • 21 篇 university of st...
  • 9 篇 university of tü...
  • 8 篇 bosch center for...
  • 5 篇 institute of sig...
  • 4 篇 robert bosch gmb...
  • 4 篇 king's college l...
  • 3 篇 institute of sig...
  • 3 篇 applied research...
  • 3 篇 institute for si...
  • 3 篇 fraunhofer insti...
  • 3 篇 signal and syste...
  • 3 篇 institute for si...
  • 3 篇 university of st...
  • 3 篇 department of ra...
  • 3 篇 gregorio marañón...
  • 3 篇 department of ra...
  • 3 篇 department of di...
  • 3 篇 digital signal p...

作者

  • 80 篇 bin yang
  • 77 篇 yang bin
  • 20 篇 abdulatif sherif
  • 18 篇 armanious karim
  • 14 篇 gatidis sergios
  • 14 篇 sergios gatidis
  • 10 篇 sherif abdulatif
  • 10 篇 liao yiwen
  • 9 篇 küstner thomas
  • 9 篇 thomas küstner
  • 8 篇 lukas mauch
  • 7 篇 eskandar george
  • 7 篇 bartler alexande...
  • 7 篇 annika liebgott
  • 6 篇 karim armanious
  • 6 篇 wiewel felix
  • 6 篇 guirguis karim
  • 6 篇 michael ulrich
  • 6 篇 konstantin nikol...
  • 6 篇 hepp tobias

语言

  • 176 篇 英文
  • 5 篇 其他
  • 2 篇 中文
检索条件"机构=Institute for Signal Processing and System Theory"
183 条 记 录,以下是51-60 订阅
排序:
USIS: Unsupervised semantic image synthesis
arXiv
收藏 引用
arXiv 2021年
作者: Eskandar, George Abdelsamad, Mohamed Armanious, Karim Yang, Bin Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Semantic Image Synthesis (SIS) is a subclass of image-to-image translation where a photorealistic image is synthesized from a segmentation mask. SIS has mostly been addressed as a supervised problem. However, state-of... 详细信息
来源: 评论
Grad-LAM: Visualization of Deep Neural Networks for Unsupervised Learning
Grad-LAM: Visualization of Deep Neural Networks for Unsuperv...
收藏 引用
European signal processing Conference (EUSIPCO)
作者: Alexander Bartler Darius Hinderer Bin Yang Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Nowadays, the explainability of deep neural networks is an essential part of machine learning. In the last years, many methods were developed to visualize important regions of an input image for the decision of the de... 详细信息
来源: 评论
Semi-supervised Riemannian Dimensionality Reduction and Classification Using a Manifold-based Random Walker Graph
Semi-supervised Riemannian Dimensionality Reduction and Clas...
收藏 引用
European signal processing Conference (EUSIPCO)
作者: Faezeh Fallah Felix Wiewel Bin Yang Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Efficient classification of manifold-based data demands dimensionality reduction. However, the optimal lower dimension is mostly unknown. Also, supervised classification demands a collection of expert-annotated sample... 详细信息
来源: 评论
Entropy-based Sample Selection for Online Continual Learning
Entropy-based Sample Selection for Online Continual Learning
收藏 引用
European signal processing Conference (EUSIPCO)
作者: Felix Wiewel Bin Yang Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Deep neural networks (DNNs) suffer from catastrophic forgetting, a rapid decrease in performance when trained on a sequence of tasks where only data of the most recent task is available. Most previous research has foc... 详细信息
来源: 评论
Condensed composite memory continual learning
arXiv
收藏 引用
arXiv 2021年
作者: Wiewel, Felix Yang, Bin Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Deep Neural Networks (DNNs) suffer from a rapid decrease in performance when trained on a sequence of tasks where only data of the most recent task is available. This phenomenon, known as catastrophic forgetting, prev... 详细信息
来源: 评论
Blind Source Separation of Radar signals in Time Domain Using Deep Learning
Blind Source Separation of Radar Signals in Time Domain Usin...
收藏 引用
International Radar Symposium (IRS)
作者: Sven Hinderer Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR Wachtberg Germany Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Identification and further analysis of radar emitters in a contested environment requires detection and separation of incoming signals. If they arrive from the same direction and at similar frequencies, deinterleaving... 详细信息
来源: 评论
AeGAN: Time-Frequency Speech Denoising via Generative Adversarial Networks
AeGAN: Time-Frequency Speech Denoising via Generative Advers...
收藏 引用
European signal processing Conference (EUSIPCO)
作者: Sherif Abdulatif Karim Armanious Karim Guirguis Jayasankar T. Sajeev Bin Yang Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
Automatic speech recognition (ASR) systems are of vital importance nowadays in commonplace tasks such as speech-to-text processing and language translation. This created the need for an ASR system that can operate in ... 详细信息
来源: 评论
Indoor Positioning based on Active Radar Sensing and Passive Reflectors: Concepts & Initial Results
arXiv
收藏 引用
arXiv 2023年
作者: Schlachter, Pascal Yu, Zhibin Iqbal, Naveed Wu, Xiaofeng Hinderer, Sven Yang, Bin Institute of Signal Processing and System Theory University of Stuttgart Pfaffenwaldring 47 Stuttgart70569 Germany Munich Research Center Huawei Technologies Duesseldorf GmbH Riesstraße 25 Munich80992 Germany
To navigate reliably in indoor environments, an industrial autonomous vehicle must know its position. However, current indoor vehicle positioning technologies either lack accuracy, usability or are too expensive. Thus... 详细信息
来源: 评论
On-Board Pedestrian Trajectory Prediction Using Behavioral Features
arXiv
收藏 引用
arXiv 2022年
作者: Czech, Phillip Braun, Markus Kreßel, Ulrich Yang, Bin Urban Autonomous Driving Department Mercedes-Benz AG Stuttgart Germany Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
This paper presents a novel approach to pedestrian trajectory prediction for on-board camera systems, which utilizes behavioral features of pedestrians that can be inferred from visual observations. Our proposed metho... 详细信息
来源: 评论
On-Board Pedestrian Trajectory Prediction Using Behavioral Features
On-Board Pedestrian Trajectory Prediction Using Behavioral F...
收藏 引用
International Conference on Machine Learning and Applications (ICMLA)
作者: Phillip Czech Markus Braun Ulrich Kreßel Bin Yang Urban Autonomous Driving Department Mercedes-Benz AG Stuttgart Germany Institute of Signal Processing and System Theory University of Stuttgart Stuttgart Germany
This paper presents a novel approach to pedestrian trajectory prediction for on-board camera systems, which utilizes behavioral features of pedestrians that can be inferred from visual observations. Our proposed metho... 详细信息
来源: 评论