Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
The mental health and well-being of children are critical components of their overall development and future success. In India, only 1 in 6 8 children are diagnosed with autism, since monitoring and addressing the men...
详细信息
The research aims to identify the age, plumage, and sex of bird species using standard Pre-trained Deep Convolutional Neural Networks (Pre-DCNNs). The proposed work involves collecting various bird images, which are t...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhance...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhances the prediction performance of classifiers when tested on unseen *** learning(DL)models have a lot of parameters,and they frequently ***,to avoid overfitting,data plays a major role to augment the latest improvements in ***,reliable data collection is a major limiting ***,this problem is undertaken by combining augmentation of data,transfer learning,dropout,and methods of normalization in *** this paper,we introduce the application of data augmentation in the field of image classification using Random Multi-model Deep Learning(RMDL)which uses the association approaches of multi-DL to yield random models for *** present a methodology for using Generative Adversarial Networks(GANs)to generate images for data *** experiments,we discover that samples generated by GANs when fed into RMDL improve both accuracy and model *** across both MNIST and CIAFAR-10 datasets show that,error rate with proposed approach has been decreased with different random models.
The goal of the proposed system is to identify whether a video has endured software manipulation or not. This system specially deals with identifying deepfake videos from real ones. As new techniques emerged to make d...
详细信息
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric *** the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriv...
详细信息
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric *** the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriving from the opponents’best response(BR),is technically the optimal strategy for the ***,computing an SSE strategy may be difficult since it needs to solve a mixed-integer program and has exponential complexity in the number of *** this end,the authors propose an equalizer ZD strategy,which can unilaterally restrict the opponent’s expected *** authors first study the existence of an equalizer ZD strategy with one-to-one situations,and analyze an upper bound of its performance with the baseline SSE *** the authors turn to multi-player models,where there exists one player adopting an equalizer ZD *** authors give bounds of the weighted sum of opponents’s utilities,and compare it with the SSE ***,the authors give simulations on unmanned aerial vehicles(UAVs)and the moving target defense(MTD)to verify the effectiveness of the proposed approach.
The Internet of Vehicles (IoV) has become one challenging communication technology in the current internet world. IoV enables real-time data exchange between vehicles, road infrastructures, and mobile communication de...
详细信息
Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization *** past decade has also witnessed their fast progress to solve a cl...
详细信息
Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization *** past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems(HEPs).The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer ***,it is hard to traverse the huge search space within reasonable resource as problem dimension *** evolutionary algorithms(EAs)tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory *** reduce such evaluations,many novel surrogate-assisted algorithms emerge to cope with HEPs in recent *** there lacks a thorough review of the state of the art in this specific and important *** paper provides a comprehensive survey of these evolutionary algorithms for *** start with a brief introduction to the research status and the basic concepts of ***,we present surrogate-assisted evolutionary algorithms for HEPs from four main *** also give comparative results of some representative algorithms and application ***,we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs.
Barcelos is a historic city in Portugal with many tourist attractions, attracting more and more visitors who come to the city with the aim of exploring it. The main objective of this article is to boost tourism in the...
详细信息
Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion *** paper presents a novel framework for segmenting the *** framework contains two mai...
详细信息
Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion *** paper presents a novel framework for segmenting the *** framework contains two main stages:The first stage is for removing different types of noises from the dermoscopic images,such as hair,speckle,and impulse noise,and the second stage is for segmentation of the dermoscopic images using an attention residual U-shaped Network(U-Net).The framework uses variational Autoencoders(VAEs)for removing the hair noises,the Generative Adversarial Denoising Network(DGAN-Net),the Denoising U-shaped U-Net(D-U-NET),and Batch Renormalization U-Net(Br-U-NET)for remov-ing the speckle noise,and the Laplacian Vector Median Filter(MLVMF)for removing the impulse *** the second main stage,the residual attention u-net was used for *** framework achieves(35.11,31.26,27.01,and 26.16),(36.34,33.23,31.32,and 28.65),and(36.33,32.21,28.54,and 27.11)for removing hair,speckle,and impulse noise,respectively,based on Peak Signal Noise Ratio(PSNR)at the level of(0.1,0.25,0.5,and 0.75)of *** framework also achieves an accuracy of nearly 94.26 in the dice score in the process of segmentation before removing noise and 95.22 after removing different types of *** experiments have shown the efficiency of the used model in removing noise according to the structural similarity index measure(SSIM)and PSNR and in the segmentation process as well.
暂无评论