Unstructured Numerical Image Dataset Separation (UNIDS) method employing an enhanced unsupervised clustering technique. The objective is to delineate an optimal number of distinct groups within the input grayscale (G-...
详细信息
Predicting crop disease on the image obtained from the affected crop has been a potential research topic. In this research, the Localise Search Optimisation Algorithm (LSOA) enabled deep Convolutional Neural Network (...
详细信息
This work addresses bi-objective hybrid flow shop scheduling problems considering consistent sublots(Bi-HFSP_CS).The objectives are to minimize the makespan and total energy ***,the Bi-HFSP_CS is formalized,followed b...
详细信息
This work addresses bi-objective hybrid flow shop scheduling problems considering consistent sublots(Bi-HFSP_CS).The objectives are to minimize the makespan and total energy ***,the Bi-HFSP_CS is formalized,followed by the establishment of a mathematical ***,enhanced version of the artificial bee colony(ABC)algorithms is proposed for tackling the Bi-HFSP_***,fourteen local search operators are employed to search for better *** different Q-learning tactics are developed to embed into the ABC algorithm to guide the selection of operators throughout the iteration ***,the proposed tactics are assessed for their efficacy through a comparison of the ABC algorithm,its three variants,and three effective algorithms in resolving 95 instances of 35 different *** experimental results and analysis showcase that the enhanced ABC algorithm combined with Q-learning(QABC1)demonstrates as the top performer for solving concerned *** study introduces a novel approach to solve the Bi-HFSP_CS and illustrates its efficacy and superior competitive strength,offering beneficial perspectives for exploration and research in relevant domains.
A secure framework for storing EHR in the hybrid cloud platform is implemented. At first, the required medical data is gathered from the database of the hospitals and split into sensitive and insensitive parts. The se...
详细信息
Even though every individual is entitled to freedom of speech, some limitations exist when this freedom is used to target and harm another individual or a group of people, as it translates to hate speech. In this stud...
详细信息
Diabetic Retinopathy (DR) is a serious hazard that can result inirreversible blindness if not addressed in a timely manner. Hence, numeroustechniques have been proposed for the accurate and timely detection ofthis dis...
详细信息
Diabetic Retinopathy (DR) is a serious hazard that can result inirreversible blindness if not addressed in a timely manner. Hence, numeroustechniques have been proposed for the accurate and timely detection ofthis disease. Out of these, Deep Learning (DL) and computer Vision (CV)methods for multiclass categorization of color fundus images diagnosed withDiabetic Retinopathy have sparked considerable attention. In this paper,we attempt to develop an extended ResNet152V2 architecture-based DeepLearning model, named ResNet2.0 to aid the timely detection of DR. TheAPTOS-2019 datasetwas used to train the model. This consists of 3662 fundusimages belonging to five different stages of DR: no DR (Class 0), mild DR(Class 1), moderate DR (Class 2), severe DR (Class 3), and proliferativeDR (Class 4). The model was gauged based on ability to detect stage-wiseDR. The images were pre-processed using negative and positive weightedGaussian-based masks as feature engineering to further enhance the qualityof the fundus images by removing the noise and normalizing the images. Upsamplingand data augmentation methods were used to address the skewnessof the original dataset. The proposed model achieved an overall accuracyof 91% and an area under the receiver-operating characteristic curve (AUC)score of 95.1%, outperforming existing Deep Learning models by around 10%.Furthermore, the class-wise F1 score for No DR was 92%, Mild DR was 82%,Moderate DR was 66%, Severe was DR 89% and Proliferative DR was 80%.
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech recognition, and software engineering. Various deep learning techniques have been successfully employed to facilitate software engineering tasks, including code generation, software refactoring, and fault localization. Many studies have also been presented in top conferences and journals, demonstrating the applications of deep learning techniques in resolving various software engineering tasks. However,although several surveys have provided overall pictures of the application of deep learning techniques in software engineering,they focus more on learning techniques, that is, what kind of deep learning techniques are employed and how deep models are trained or fine-tuned for software engineering tasks. We still lack surveys explaining the advances of subareas in software engineering driven by deep learning techniques, as well as challenges and opportunities in each subarea. To this end, in this study, we present the first task-oriented survey on deep learning-based software engineering. It covers twelve major software engineering subareas significantly impacted by deep learning techniques. Such subareas spread out through the whole lifecycle of software development and maintenance, including requirements engineering, software development, testing, maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to revolutionize the whole discipline of software engineering, providing one survey covering as many subareas as possible in software engineering can help future research push forward the frontier of deep learning-based software engineering more systematically. For each of the selected subareas,we highlight the major advances achieved by applying deep learning techniques with pointers to the available datasets i
This paper addresses the underexplored landscape of chaotic functions in steganography, existing literature when examined under PRISMA-ScR framework it was realized that most of the studies predominantly focuses on ut...
详细信息
Video forgery detection has been necessary with recent spurt in fake videos like Deepfakes and doctored videos from multiple video capturing devices. In this paper, we provide a novel technique of detecting fake video...
详细信息
ASR is an effectual approach, which converts human speech into computer actions or text format. It involves extracting and determining the noise feature, the audio model, and the language model. The extraction and det...
详细信息
暂无评论