This paper proposes a new chaos-based extremum coding method to realize a true random number generator (RNG). Based on the chain rule, we innovatively introduce two parameters into the dynamics of chaotic systems to m...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, an...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, and cost. In recent years, convolution neural networks (CNNs) have revolutionized computer vision. Convolution is a "local" CNN technique that is only applicable to a small region surrounding an image. Vision Transformers (ViT) use self-attention, which is a "global" activity since it collects information from the entire image. As a result, the ViT can successfully gather distant semantic relevance from an image. This study examined several optimizers, including Adamax, SGD, RMSprop, Adadelta, Adafactor, Nadam, and Adagrad. With 1750 Healthy and Glaucoma images in the IEEE fundus image dataset and 4800 healthy and glaucoma images in the LAG fundus image dataset, we trained and tested the ViT model on these datasets. Additionally, the datasets underwent image scaling, auto-rotation, and auto-contrast adjustment via adaptive equalization during preprocessing. The results demonstrated that preparing the provided dataset with various optimizers improved accuracy and other performance metrics. Additionally, according to the results, the Nadam Optimizer improved accuracy in the adaptive equalized preprocessing of the IEEE dataset by up to 97.8% and in the adaptive equalized preprocessing of the LAG dataset by up to 92%, both of which were followed by auto rotation and image resizing processes. In addition to integrating our vision transformer model with the shift tokenization model, we also combined ViT with a hybrid model that consisted of six different models, including SVM, Gaussian NB, Bernoulli NB, Decision Tree, KNN, and Random Forest, based on which optimizer was the most successful for each dataset. Empirical results show that the SVM Model worked well and improved accuracy by up to 93% with precision of up to 94% in the adaptive equalization preprocess
Human Activity Recognition(HAR)has always been a difficult task to *** is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination with ot...
详细信息
Human Activity Recognition(HAR)has always been a difficult task to *** is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things(IoT).Human Activity Recognition data can be recorded with the help of sensors,images,or *** daily routine-based human activities such as walking,standing,sitting,etc.,could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network(2D CNN)MODEL,Long Short Term Memory(LSTM)Model,Bidirectional long short-term memory(Bi-LSTM)are used for the *** has been demonstrated that recognizing the daily routine-based on human activities can be extremely accurate,with almost all activities accurately getting recognized over 90%of the ***,because all the examples are generated from only 20 s of data,these actions can be recognised *** from classification,the work extended to verify and investigate the need for wearable sensing devices in individually walking patients with Cerebral Palsy(CP)for the evaluation of chosen Spatio-temporal features based on 3D foot ***-control research was conducted with 35 persons with CP ranging in weight from 25 to 65 *** Motion Capture(OMC)equipment was used as the referral method to assess the functionality and quality of the foot-worn *** average accuracy±precision for stride length,cadence,and step length was 3.5±4.3,4.1±3.8,and 0.6±2.7 cm *** cadence,stride length,swing,and step length,people with CP had considerably high inter-stride ***-worn sensing devices made it easier to examine Gait Spatio-temporal data even without a laboratory set up with high accuracy and precision about gait abnormalities in people who have CP during linear walking.
Pneumonia is an acute lung infection that has caused many fatalitiesglobally. Radiologists often employ chest X-rays to identify pneumoniasince they are presently the most effective imaging method for this ***-aided d...
详细信息
Pneumonia is an acute lung infection that has caused many fatalitiesglobally. Radiologists often employ chest X-rays to identify pneumoniasince they are presently the most effective imaging method for this ***-aided diagnosis of pneumonia using deep learning techniques iswidely used due to its effectiveness and performance. In the proposed method,the Synthetic Minority Oversampling Technique (SMOTE) approach is usedto eliminate the class imbalance in the X-ray dataset. To compensate forthe paucity of accessible data, pre-trained transfer learning is used, and anensemble Convolutional Neural Network (CNN) model is developed. Theensemble model consists of all possible combinations of the MobileNetv2,Visual Geometry Group (VGG16), and DenseNet169 models. MobileNetV2and DenseNet169 performed well in the Single classifier model, with anaccuracy of 94%, while the ensemble model (MobileNetV2+DenseNet169)achieved an accuracy of 96.9%. Using the data synchronous parallel modelin Distributed Tensorflow, the training process accelerated performance by98.6% and outperformed other conventional approaches.
Maternal health during pregnancy is influenced by various factors that significantly impact pregnancy outcomes. This paper aims to highlight these critical factors, promote awareness, and advocate proactive self-care ...
详细信息
Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic *** review discusses the current state of SM-based surv...
详细信息
Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic *** review discusses the current state of SM-based surveillance methods for early epidemic outbreaks and the role of ML and DL in enhancing their ***,every year,a large amount of data related to epidemic outbreaks,particularly Twitter data is generated by *** paper outlines the theme of SM analysis for tracking health-related issues and detecting epidemic outbreaks in SM,along with the ML and DL techniques that have been configured for the detection of epidemic *** has emerged as a promising ML technique that adaptsmultiple layers of representations or features of the data and yields state-of-the-art extrapolation *** recent years,along with the success of ML and DL in many other application domains,both ML and DL are also popularly used in SM *** paper aims to provide an overview of epidemic outbreaks in SM and then outlines a comprehensive analysis of ML and DL approaches and their existing applications in SM ***,this review serves the purpose of offering suggestions,ideas,and proposals,along with highlighting the ongoing challenges in the field of early outbreak detection that still need to be addressed.
Considering the recent developments in the digital environment,ensuring a higher level of security for networking systems is *** security approaches are being constantly developed to protect against evolving *** ensem...
详细信息
Considering the recent developments in the digital environment,ensuring a higher level of security for networking systems is *** security approaches are being constantly developed to protect against evolving *** ensemble model for the intrusion classification system yielded promising results based on the knowledge of many prior *** research work aimed to create a more diverse and effective ensemble *** this end,selected six classification models,Logistic Regression(LR),Naive Bayes(NB),K-Nearest Neighbor(KNN),Decision Tree(DT),Support Vector Machine(SVM),and Random Forest(RF)from existing study to run as independent *** the individual models were trained,a Correlation-Based Diversity Matrix(CDM)was created by determining their *** models for the ensemble were chosen by the proposed Modified Minimization Approach for Model Subset Selection(Modified-MMS)from Lower triangular-CDM(L-CDM)as *** proposed algorithm performance was assessed using the Network Security Laboratory—Knowledge Discovery in Databases(NSL-KDD)dataset,and several performance metrics,including accuracy,precision,recall,and *** selecting a diverse set of models,the proposed system enhances the performance of an ensemble by reducing overfitting and increasing prediction *** proposed work achieved an impressive accuracy of 99.26%,using only two classification models in an ensemble,which surpasses the performance of a larger ensemble that employs six classification models.
Leukemia, a malignant disease characterized by the rapid proliferation of specific types of white blood cells (WBC), has prompted increased interest in leveraging automatic WBC classification system. This study presen...
详细信息
ChatGPT, an advanced language model powered by artificial intelligence, has emerged as a transformative tool in the field of education. This article explores the potential of ChatGPT in revolutionizing learning and co...
详细信息
Increasing experimental evidence has shown that circRNA has the potential to serve as a biomarker for disease diagnosis and prognosis, especially in cancer [1]. circ RNA actively participates in numerous pathological ...
详细信息
Increasing experimental evidence has shown that circRNA has the potential to serve as a biomarker for disease diagnosis and prognosis, especially in cancer [1]. circ RNA actively participates in numerous pathological processes by serving as an miRNA sponge. Consequently, the precise prediction of circRNA-miRNA interactions(CMIs) is crucial for narrowing down the scope of biological experiments and expediting the research and development of disease treatments.
暂无评论