Skin cancer is one of the most prevalent forms of human cancer. It is recognized mainly visually, beginning with clinical screening and continuing with the dermoscopic examination, histological assessment, and specime...
详细信息
Magnesium chips were coated with a high concentration of graphite using a binder and were used as the raw material for injection molding. The microstructure of the magnesium injection-molded product with added graphit...
详细信息
Adversarial attack is a method used to deceive machine learning models, which offers a technique to test the robustness of the given model, and it is vital to balance robustness with accuracy. Artificial intelligence ...
详细信息
Advances in machine learning and computer vision have significantly improved the diagnostic capabilities of medical imaging. Convolutional Neural Networks (CNNs) have emerged as a crucial tool for image classification...
详细信息
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data *** utilizes on-demand resource provisioni...
详细信息
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data *** utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization *** this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud *** capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource *** is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into *** addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS *** further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM *** results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for *** statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In thi...
详细信息
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In this paper, we conducted a comprehensive evaluation of large multimodal models, such as GPT4V and Gemini, in various text-related visual tasks including text recognition, scene text-centric visual question answering(VQA), document-oriented VQA, key information extraction(KIE), and handwritten mathematical expression recognition(HMER). To facilitate the assessment of optical character recognition(OCR) capabilities in large multimodal models, we propose OCRBench, a comprehensive evaluation benchmark. OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available. Furthermore, our study reveals both the strengths and weaknesses of these models, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expression *** importantly, the baseline results presented in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal *** evaluation pipeline and benchmark are available at https://***/Yuliang-Liu/Multimodal OCR.
This research addresses the pressing global demand for food by leveraging cutting-edge deep learning techniques for automating plant disease detection. Focusing on tomato and potato leaf diseases, the study utilized t...
详细信息
Background: Epilepsy is a neurological disorder that leads to seizures. This occurs due to excessive electrical discharge by the brain cells. An effective seizure prediction model can aid in improving the lifestyle of...
详细信息
The Internet of Vehicles (IoV) has become one challenging communication technology in the current internet world. IoV enables real-time data exchange between vehicles, road infrastructures, and mobile communication de...
详细信息
Intrusion detection systems(IDS)are one of the most promising ways for securing data and networks;In recent decades,IDS has used a variety of categorization *** classifiers,on the other hand,do not work effectively un...
详细信息
Intrusion detection systems(IDS)are one of the most promising ways for securing data and networks;In recent decades,IDS has used a variety of categorization *** classifiers,on the other hand,do not work effectively unless they are combined with additional algorithms that can alter the classifier’s parameters or select the optimal sub-set of features for the *** are used in tandem with classifiers to increase the stability and with efficiency of the classifiers in detecting *** algorithms,on the other hand,have a number of limitations,particularly when used to detect new types of *** this paper,the NSL KDD dataset and KDD Cup 99 is used to find the performance of the proposed classifier model and compared;These two IDS dataset is preprocessed,then Auto Cryptographic Denoising(ACD)adopted to remove noise in the feature of the IDS dataset;the classifier algorithms,K-Means and Neural network classifies the dataset with adam *** classifier is evaluated by measuring performance measures like f-measure,recall,precision,detection rate and *** neural network obtained the highest classifying accuracy as 91.12%with drop-out function that shows the efficiency of the classifier model with drop-out function for KDD Cup99 *** their power and limitations in the proposed methodology that could be used in future works in the IDS area.
暂无评论