Background & Need: The early detection of thoracic diseases and COVID-19 (coronavirus disease) significantly limits propagation and increases therapeutic outcomes. This article focuses on swiftly distinguishi...
详细信息
Background & Need: The early detection of thoracic diseases and COVID-19 (coronavirus disease) significantly limits propagation and increases therapeutic outcomes. This article focuses on swiftly distinguishing COVID-19 patients with 10 chronic thoracic illnesses from healthy examples. The death rates of COVID-19-confirmed patients are rising due to chronic thoracic illnesses. Method: To identify thoracic illnesses (Consolidation, Tuberculosis, Edema, Fibrosis, Hernia, Mass, Nodule, Plural-thickening, Pneumonia, Healthy) from X-ray images with COVID-19, we provide an ensemble-feature-fusion (FFT) deep learning (DL) model. 14,400 chest X-ray images (CXRI) of COVID-19 and other thoracic illnesses were obtained from five public sources and applied UNet-based data augmentation. High-quality images were intended to be provided under the CXR standard. To provide model parameters and feature extractors, four deep convolutional neural networks (CNNs) with a proprietary CapsNet as the backbone were employed. To generate the ensemble-fusion classifiers, we suggested five additional USweA (Unified Stacking weighted Averaging)-based comparative ensemble models as an alternative to depending solely on the findings of the single base model. Additionally, USweA enhanced the models' performance and reduced the base error-rate. USweA models were knowledgeable of the principles of multiple DL evaluations on distinct labels. Results: The results demonstrated that the feature-fusion strategy performed better than the standalone DL models in terms of overall classification effectiveness. According to study results, Thoracic-Net significantly improves COVID-19 context recognition for thoracic infections. It achieves superior results to existing CNNs, with a 99.75% accuracy, 97.89% precision, 98.69% recall, 98.27% F1-score, shallow 28 CXR zero-one loss, 99.27% ROC-AUC-score, 1.45% error rate, 0.9838 MCC, (0.98001, 0.99076) 95% CI, and 5.708 s to test individual CXR. This suggested USweA m
Blockchain technology, born as the backbone of cryptocurrencies like Bitcoin, has rapidly expanded into a versatile platform spanning various industries. This review paper delves into the critical aspects of security ...
详细信息
In the growing information retrieval (IR) world, selecting suitable keywords and generating queries is important for effective retrieval. Modern database applications need a sophisticated interface for automatically u...
详细信息
Hematoxylin and eosin (H&E) staining are the key sources for identifying breast cancer patterns with different colors and shapes of nuclei cells for segmenting histopathology nucleus images. In nucleus cells, the ...
详细信息
The advent of autonomous vehicles has revolutionized the automotive industry, offering promising advancements in safety, efficiency, and mobility. To integrate these autonomous vehicles into our society seamlessly, it...
详细信息
With the increasing popularity of smart portable electronic gadgets, voice-based online person verification systems have become prevalent. However, these systems are susceptible to attacks where illegitimate individua...
详细信息
With the increasing popularity of smart portable electronic gadgets, voice-based online person verification systems have become prevalent. However, these systems are susceptible to attacks where illegitimate individuals exploit the recorded voices of legitimate users, leading to false confirmations—spoofing attacks. To overcome this limitation, this article presents an innovative solution by combining speech and online handwritten signatures to mitigate the risks associated with spoofing attacks in voice-based authentication systems because a person has to be present in front of the system to produce an online handwritten signature. To accomplish this objective, this work proposes a novel bidirectional Legendre memory unit (BLMU), a type of recurrent neural network (RNN), for person authentication (verification) and recognition. The Legendre memory unit (LMU) is an innovative memory cell for RNNs that efficiently retains temporal/non-temporal sequential information over a long period with minimal resources. It achieves information orthogonalization by solving coupled ordinary differential equations (ODEs) and leveraging Legendre polynomials, ensuring effective data representation. The proposed framework for person authentication and recognition comprises seven convolution layers, four BLMU layers, two dense layers, and one output layer. The performance of the proposed BLMU-based deep learning framework has been evaluated on a self-generated/private dataset of combined feature matrix of voice signals and online handwritten signatures in the Devanagari script. To assess performance, experiments have also been conducted using various RNN architectures, such as LSTM, BLSTM, and ordinary differential equation recurrent neural network (ODE-RNN), to have a performance comparison with the proposed BLMU-based deep learning (DL) framework. The results demonstrate the superiority of the proposed BLMU-based DL framework in enhancing the accuracy of person verification systems,
Fake news, Fake certification, and Plagiarism are the most common issues arising these days. During this COVID-19 situation, there are a lot of rumors and fake news spreading and some of us are using fake certificatio...
详细信息
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation *** methods for extracting features from mesh edges or faces struggle wi...
详细信息
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation *** methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall *** address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh *** FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh *** Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline ***,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
High precision and high throughput detection of heavy metal ions is essential for water quality monitoring and ***,we propose a plasmonic & electrochemical dual-mode fiber sensing probe for label-free and real-tim...
详细信息
High precision and high throughput detection of heavy metal ions is essential for water quality monitoring and ***,we propose a plasmonic & electrochemical dual-mode fiber sensing probe for label-free and real-time detection of multiple ions(Pb2+and Cu2+as examples).This sensor comprises a multimode fiber-single mode fiber reflection probe,the outer surface of which is coated with a gold nanofilm to excite the surface plasmon resonance(SPR) optically and simultaneously serves as an electrochemical working *** traditional electrochemical detection,the enrichment of ions cannot be detected in ***,by utilizing the plasmonic & electrochemical dual-mode detection method,various kinds of metal ions can be deposited onto the gold nanofilm and selectively oxidized during forward potential scanning,and the entire electrochemical process can be monitored by SPR *** experimentally demonstrate that the sensor can simultaneously detect Pb2+and Cu2+in a mixed solution in real-time,providing a linear response over the ion concentration range from 10-12to 10-7M and offering an excellent detection limit(1.69×10-14–5.49×10-13M).The proposed dual-mode fiber sensor has the benefits of remote sensing,compact footprint,and cost-effectiveness and shows excellent potential for water quality risk management in difficult-to-reach environments.
Suspicious activity recognition (SAR) is an active research field in computer vision and image processing due to the rapid demand for intelligent video surveillance systems. However, current automated systems focus to...
详细信息
暂无评论