The increasing demand for agricultural produce and the strain on global water resources highlight the need for innovative solutions to improve water efficiency in farming. This work introduces an IoT-powered Smart Irr...
详细信息
Oral cancer diagnosis at earlier stage is very crucial to decide the treatment procedure and to avoid mortality due to this malignant disease. Histopathological imaging is one among modalities widely used by the clini...
详细信息
Genetic diseases are conditions caused by a spontaneous alteration or mutation in an individual's DNA. People can inherit genetic disorders from parents, which means they are born with them, even if they are not i...
详细信息
Disastrous situations pose a formidable challenge, testing our resilience against nature's fury and the race against time to prevent the loss of human life. It is noted that in such situations that Microblogging p...
详细信息
Security and secure routing are important design issues in the design of Wireless Sensor Networks (WSNs). Intrusion Detection systems (IDSs) are useful for securing the communication in WSNs. An IDS can be developed b...
详细信息
One of the main goals of sentiment analysis is to analyze human perception to continuously adapt to each person’s demands. The information gathered is structured to understand the mood or emotional tone of the review...
详细信息
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)***,traditional ML and AutoML approac...
详细信息
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)***,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation *** glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of *** approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model *** validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our *** the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for *** second pipeline is dedicated to feature extraction and classification,utilizing deep learning ***,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class *** ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model *** our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of *** HC might be utilized tow...
详细信息
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of *** HC might be utilized toward determining gestational age and tracking fetal *** automated approach is particularly valuable in low-resource settings where access to trained sonographers is *** CAD system is divided into two steps:to begin,Haar-like characteristics were extracted from ultrasound pictures in order to train a classifier using random forests to find the fetal *** identified the HC using dynamic programming,an elliptical fit,and a Hough *** computer-aided detection(CAD)program was well-trained on 999 pictures(HC18 challenge data source),and then verified on 335 photos from all trimesters in an independent test set.A skilled sonographer and an expert in medicine personally marked the test *** used the crown-rump length(CRL)measurement to calculate the reference gestational age(GA).In the first,second,and third trimesters,the median difference between the standard GA and the GA calculated by the skilled sonographer stayed at 0.7±2.7,0.0±4.5,and 2.0±12.0 days,*** regular duration variance between the baseline GA and the health investigator’s GA remained 1.5±3.0,1.9±5.0,and 4.0±14 a couple of *** mean variance between the standard GA and the CAD system’s GA remained between 0.5 and 5.0,with an additional variation of 2.9 to 12.5 *** outcomes reveal that the computer-aided detection(CAD)program outperforms an expert *** paired with the classifications reported in the literature,the provided system achieves results that are comparable or even *** have assessed and scheduled this computerized approach for HC evaluation,which includes information from all trimesters of gestation.
Several newly developed techniques and tools for manipulating images, audio, and videos have been introduced as an outcome of the recent and rapid breakthroughs in AI, machine learning, and deep learning. While most a...
详细信息
The Quantum Internet of Things (QIoT) in the healthcare industry holds the promise of transforming patient care, diagnostics, and medical research. Quantum-enhanced sensors, communication, and computation offer unprec...
详细信息
The Quantum Internet of Things (QIoT) in the healthcare industry holds the promise of transforming patient care, diagnostics, and medical research. Quantum-enhanced sensors, communication, and computation offer unprecedented capabilities that can revolutionize how healthcare services are delivered and experienced. This paper explores the potential of QIoT in the context of smart healthcare, where interconnected quantum-enabled devices and systems create an ecosystem that enhances data security, enables real-time monitoring, and advances medical knowledge. We delve into the applications of quantum sensors in precise health monitoring, the role of quantum communication in secure telemedicine, and the computational power of quantum computing in drug discovery and personalized medicine. We discuss challenges such as technical feasibility, scalability, and regulatory considerations, along with the emerging trends and opportunities in this transformative field. By examining the intersection of quantum technologies and smart healthcare, this paper aims to shed light on the novel approaches and breakthroughs that could redefine the future of healthcare delivery and patient outcomes. IEEE
暂无评论