This work addresses bi-objective hybrid flow shop scheduling problems considering consistent sublots(Bi-HFSP_CS).The objectives are to minimize the makespan and total energy ***,the Bi-HFSP_CS is formalized,followed b...
详细信息
This work addresses bi-objective hybrid flow shop scheduling problems considering consistent sublots(Bi-HFSP_CS).The objectives are to minimize the makespan and total energy ***,the Bi-HFSP_CS is formalized,followed by the establishment of a mathematical ***,enhanced version of the artificial bee colony(ABC)algorithms is proposed for tackling the Bi-HFSP_***,fourteen local search operators are employed to search for better *** different Q-learning tactics are developed to embed into the ABC algorithm to guide the selection of operators throughout the iteration ***,the proposed tactics are assessed for their efficacy through a comparison of the ABC algorithm,its three variants,and three effective algorithms in resolving 95 instances of 35 different *** experimental results and analysis showcase that the enhanced ABC algorithm combined with Q-learning(QABC1)demonstrates as the top performer for solving concerned *** study introduces a novel approach to solve the Bi-HFSP_CS and illustrates its efficacy and superior competitive strength,offering beneficial perspectives for exploration and research in relevant domains.
This paper addresses the underexplored landscape of chaotic functions in steganography, existing literature when examined under PRISMA-ScR framework it was realized that most of the studies predominantly focuses on ut...
详细信息
Even though every individual is entitled to freedom of speech, some limitations exist when this freedom is used to target and harm another individual or a group of people, as it translates to hate speech. In this stud...
详细信息
Video forgery detection has been necessary with recent spurt in fake videos like Deepfakes and doctored videos from multiple video capturing devices. In this paper, we provide a novel technique of detecting fake video...
详细信息
A secure framework for storing EHR in the hybrid cloud platform is implemented. At first, the required medical data is gathered from the database of the hospitals and split into sensitive and insensitive parts. The se...
详细信息
Diabetic Retinopathy (DR) is a serious hazard that can result inirreversible blindness if not addressed in a timely manner. Hence, numeroustechniques have been proposed for the accurate and timely detection ofthis dis...
详细信息
Diabetic Retinopathy (DR) is a serious hazard that can result inirreversible blindness if not addressed in a timely manner. Hence, numeroustechniques have been proposed for the accurate and timely detection ofthis disease. Out of these, Deep Learning (DL) and computer Vision (CV)methods for multiclass categorization of color fundus images diagnosed withDiabetic Retinopathy have sparked considerable attention. In this paper,we attempt to develop an extended ResNet152V2 architecture-based DeepLearning model, named ResNet2.0 to aid the timely detection of DR. TheAPTOS-2019 datasetwas used to train the model. This consists of 3662 fundusimages belonging to five different stages of DR: no DR (Class 0), mild DR(Class 1), moderate DR (Class 2), severe DR (Class 3), and proliferativeDR (Class 4). The model was gauged based on ability to detect stage-wiseDR. The images were pre-processed using negative and positive weightedGaussian-based masks as feature engineering to further enhance the qualityof the fundus images by removing the noise and normalizing the images. Upsamplingand data augmentation methods were used to address the skewnessof the original dataset. The proposed model achieved an overall accuracyof 91% and an area under the receiver-operating characteristic curve (AUC)score of 95.1%, outperforming existing Deep Learning models by around 10%.Furthermore, the class-wise F1 score for No DR was 92%, Mild DR was 82%,Moderate DR was 66%, Severe was DR 89% and Proliferative DR was 80%.
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech recognition, and software engineering. Various deep learning techniques have been successfully employed to facilitate software engineering tasks, including code generation, software refactoring, and fault localization. Many studies have also been presented in top conferences and journals, demonstrating the applications of deep learning techniques in resolving various software engineering tasks. However,although several surveys have provided overall pictures of the application of deep learning techniques in software engineering,they focus more on learning techniques, that is, what kind of deep learning techniques are employed and how deep models are trained or fine-tuned for software engineering tasks. We still lack surveys explaining the advances of subareas in software engineering driven by deep learning techniques, as well as challenges and opportunities in each subarea. To this end, in this study, we present the first task-oriented survey on deep learning-based software engineering. It covers twelve major software engineering subareas significantly impacted by deep learning techniques. Such subareas spread out through the whole lifecycle of software development and maintenance, including requirements engineering, software development, testing, maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to revolutionize the whole discipline of software engineering, providing one survey covering as many subareas as possible in software engineering can help future research push forward the frontier of deep learning-based software engineering more systematically. For each of the selected subareas,we highlight the major advances achieved by applying deep learning techniques with pointers to the available datasets i
Free speech is essential, but it can conflict with protecting marginalized groups from harm caused by hate speech. Social media platforms have become breeding grounds for this harmful content. While studies exist to d...
详细信息
Free speech is essential, but it can conflict with protecting marginalized groups from harm caused by hate speech. Social media platforms have become breeding grounds for this harmful content. While studies exist to detect hate speech, there are significant research gaps. First, most studies used text data instead of other modalities such as videos or audio. Second, most studies explored traditional machine learning algorithms. However, due to the increase in complexities of computational tasks, there is need to employ complex techniques and methodologies. Third, majority of the research studies have either been evaluated using very few evaluation metrics or not statistically evaluated at all. Lastly, due to the opaque, black-box nature of the complex classifiers, there is need to use explainability techniques. This research aims to address these gaps by detecting hate speech in English and Kiswahili languages using videos manually collected from YouTube. The videos were converted to text and used to train various classifiers. The performance of these classifiers was evaluated using various evaluation and statistical measurements. The experimental results suggest that the random forest classifier achieved the highest results for both languages across all evaluation measurements compared to all classifiers used. The results for English language were: accuracy 98%, AUC 96%, precision 99%, recall 97%, F1 98%, specificity 98% and MCC 96% while the results for Kiswahili language were: accuracy 90%, AUC 94%, precision 93%, recall 92%, F1 94%, specificity 87% and MCC 75%. These results suggest that the random forest classifier is robust, effective and efficient in detecting hate speech in any language. This also implies that the classifier is reliable in detecting hate speech and other related problems in social media. However, to understand the classifiers’ decision-making process, we used the Local Interpretable Model-agnostic Explanations (LIME) technique to explain the
ASR is an effectual approach, which converts human speech into computer actions or text format. It involves extracting and determining the noise feature, the audio model, and the language model. The extraction and det...
详细信息
The recent development of communication technologies made it possible for people to share opinions on various social media platforms. The opinion of the people is converted into small-sized textual data. Aspect Based ...
详细信息
暂无评论