咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 68 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 54 篇 工学
    • 43 篇 计算机科学与技术...
    • 32 篇 软件工程
    • 5 篇 电气工程
    • 5 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 3 篇 光学工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物工程
    • 2 篇 安全科学与工程
  • 25 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 13 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 18 篇 理学
    • 11 篇 数学
    • 7 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 4 篇 系统科学
    • 3 篇 化学
    • 1 篇 天文学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 军事学

主题

  • 4 篇 benchmarking
  • 4 篇 linguistics
  • 3 篇 graph neural net...
  • 3 篇 computational li...
  • 3 篇 semantics
  • 2 篇 reliability
  • 2 篇 reinforcement le...
  • 2 篇 signal processin...
  • 2 篇 scattering param...
  • 2 篇 speech processin...
  • 2 篇 acoustics
  • 2 篇 digital storage
  • 2 篇 natural language...
  • 2 篇 generators
  • 2 篇 crowdsourcing
  • 1 篇 satellite naviga...
  • 1 篇 differential sys...
  • 1 篇 knowledge based ...
  • 1 篇 friction compens...
  • 1 篇 representation l...

机构

  • 37 篇 institute for ad...
  • 11 篇 school of inform...
  • 11 篇 renmin universit...
  • 7 篇 center for llm i...
  • 5 篇 university of sc...
  • 5 篇 center for machi...
  • 4 篇 institute of nat...
  • 4 篇 northeastern uni...
  • 4 篇 school of mathem...
  • 4 篇 institute of adv...
  • 4 篇 key laboratory o...
  • 4 篇 guanghua school ...
  • 4 篇 xiangjiang labor...
  • 4 篇 peking universit...
  • 4 篇 state key labora...
  • 4 篇 national enginee...
  • 4 篇 institute of com...
  • 3 篇 shanghai jiao to...
  • 3 篇 key lab of high ...
  • 3 篇 meituan

作者

  • 35 篇 li zhiyu
  • 29 篇 xiong feiyu
  • 23 篇 tang bo
  • 17 篇 song shichao
  • 15 篇 niu simin
  • 12 篇 wang hanyu
  • 10 篇 liang xun
  • 7 篇 yang jiawei
  • 5 篇 zhang zhongwang
  • 5 篇 zheng zifan
  • 5 篇 yu qingchen
  • 5 篇 xu zhi-qin john
  • 5 篇 zhang wentao
  • 4 篇 yu yu
  • 4 篇 chen ding
  • 4 篇 deng haiying
  • 4 篇 zhang sensen
  • 4 篇 wang wenjin
  • 4 篇 weinan e.
  • 4 篇 lin pengxiao

语言

  • 53 篇 英文
  • 15 篇 其他
检索条件"机构=Institute of Advanced Algorithms Research"
68 条 记 录,以下是1-10 订阅
排序:
SEAP: Training-free Sparse Expert Activation Pruning Unlock the Brainpower of Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Liang, Xun Wang, Hanyu Lai, Huayi Niu, Simin Song, Shichao Yang, Jiawei Zhao, Jihao Xiong, Feiyu Tang, Bo Li, Zhiyu School of Information Renmin University of China Beijing China Institute for Advanced Algorithms Research Shanghai China
Large Language Models have achieved remarkable success across various natural language processing tasks, yet their high computational cost during inference remains a major bottleneck. This paper introduces Sparse Expe... 详细信息
来源: 评论
MoC: Mixtures of Text Chunking Learners for Retrieval-Augmented Generation System
arXiv
收藏 引用
arXiv 2025年
作者: Zhao, Jihao Ji, Zhiyuan Fan, Zhaoxin Wang, Hanyu Niu, Simin Tang, Bo Xiong, Feiyu Li, Zhiyu School of Information Renmin University of China Beijing China Institute for Advanced Algorithms Research Shanghai China
Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline. This paper initially introduces a du... 详细信息
来源: 评论
When Sparse Graph Representation Learning Falls into Domain Shift: Feature Augmentation for Cross-Domain Graph Meta-Learning
When Sparse Graph Representation Learning Falls into Domain ...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Niu, Simin Liang, Xun Zhang, Sensen Li, Zhiyu Zhang, Xuan Bo, Wu Wang, Hanyu Song, Shichao Wang, Mengwei Yang, Jiawei School of Information Renmin University of China Beijing China Institute for Advanced Algorithms Research Shanghai China Guanghua School of Management Peking University Beijing China Xiangjiang Laboratory Central South University Hunan China
Graph Meta-learning methods have improved the performance of few-shot node classification by means of applying meta-learning to the data in non-Euclidean domains. However, most works focus on adopting a single domain,... 详细信息
来源: 评论
Retrieval-Augmented Multilingual Citation Generation
Retrieval-Augmented Multilingual Citation Generation
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Liang, Xun Niu, Simin Zhang, Sensen Li, Zhiyu Zhang, Xuan Wu, Bo Xiong, Feiyu Tang, Bo Wang, Hanyu Song, Shichao Wang, Mengwei Yang, Jiawei School of Information Renmin University of China Beijing China Institute for Advanced Algorithms Research Shanghai China Guanghua School of Management Peking University Beijing China Xiangjiang Laboratory Central South University Hunan China
Retrieval-augmented citation generation (RACG) helps users trust the large language model output by retrieving evidence from reliable sources. However, most current RACG research focuses on single-language tasks, part... 详细信息
来源: 评论
HopRAG: Multi-Hop Reasoning for Logic-Aware Retrieval-Augmented Generation
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Hao Wang, Zhengren Chen, Xi Li, Zhiyu Xiong, Feiyu Yu, Qinhan Zhang, Wentao Peking University China Center for LLM Institute for Advanced Algorithms Research Shanghai China Huazhong University of Science and Technology China
Retrieval-Augmented Generation (RAG) systems often struggle with imperfect retrieval, as traditional retrievers focus on lexical or semantic similarity rather than logical relevance. To address this, we propose HopRAG... 详细信息
来源: 评论
SurveyX: Academic Survey Automation via Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Liang, Xun Yang, Jiawei Wang, Yezhaohui Tang, Chen Zheng, Zifan Song, Shichao Niu, Simin Wang, Hanyu Tang, Bo Xiong, Feiyu Mao, Keming Li, Zhiyu Renmin University of China Beijing China Northeastern University Shenyang China Institute for Advanced Algorithms Research Shanghai China The University of Sydney Sydney Australia
Large Language Models (LLMs) have demonstrated exceptional comprehension capabilities and a vast knowledge base, suggesting that LLMs can serve as efficient tools for automated survey generation. However, recent resea... 详细信息
来源: 评论
SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model
arXiv
收藏 引用
arXiv 2025年
作者: Liang, Xun Niu, Simin Li, Zhiyu Zhang, Sensen Wang, Hanyu Xiong, Feiyu Fan, Jason Zhaoxin Tang, Bo Song, Shichao Wang, Mengwei Yang, Jiawei School of Information Renmin University of China Beijing China Institute for Advanced Algorithms Research Shanghai China Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing School of Artificial Intelligence Beihang University Beijing China
The indexing-retrieval-generation paradigm of retrieval-augmented generation (RAG) has been highly successful in solving knowledge-intensive tasks by integrating external knowledge into large language models (LLMs). H... 详细信息
来源: 评论
When Sparse Graph Representation Learning Falls into Domain Shift: Feature Augmentation for Cross-Domain Graph Meta-Learning
When Sparse Graph Representation Learning Falls into Domain ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Simin Niu Xun Liang Sensen Zhang Zhiyu Li Xuan Zhang Wu Bo Hanyu Wang Shichao Song Mengwei Wang Jiawei Yang School of Information Renmin University of China Beijing China Institute for Advanced Algorithms Research Shanghai China Guanghua School of Management Peking University Beijing China Xiangjiang Laboratory Central South University Hunan China
Graph Meta-learning methods have improved the performance of few-shot node classification by means of applying meta-learning to the data in non-Euclidean domains. However, most works focus on adopting a single domain,... 详细信息
来源: 评论
Retrieval-Augmented Multilingual Citation Generation
Retrieval-Augmented Multilingual Citation Generation
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xun Liang Simin Niu Sensen Zhang Zhiyu Li Xuan Zhang Bo Wu Feiyu Xiong Bo Tang Hanyu Wang Shichao Song Mengwei Wang Jiawei Yang School of Information Renmin University of China Beijing China Institute for Advanced Algorithms Research Shanghai China Guanghua School of Management Peking University Beijing China Xiangjiang Laboratory Central South University Hunan China
Retrieval-augmented citation generation (RACG) helps users trust the large language model output by retrieving evidence from reliable sources. However, most current RACG research focuses on single-language tasks, part... 详细信息
来源: 评论
GRAPHMOE: Amplifying Cognitive Depth of Mixture-of-Experts Network via Introducing Self-Rethinking Mechanism
arXiv
收藏 引用
arXiv 2025年
作者: Tang, Chen Lv, Bo Zheng, Zifan Yang, Bohao Zhao, Kun Liao, Ning Wang, Xiaoxing Xiong, Feiyu Li, Zhiyu Liu, Nayu Jiang, Jingchi Institute for Advanced Algorithms Research Shanghai China Institute of Computing Technology Chinese Academy of Sciences China The University of Manchester United Kingdom The University of Pittsburgh United States National Key Laboratory of Smart Farm Technologies and Systems Harbin Institute of Technology China University of Sydney Australia
Traditional Mixture-of-Experts (MoE) networks benefit from utilizing multiple smaller expert models as opposed to a single large network. However, these experts typically operate independently, leaving a question open... 详细信息
来源: 评论