咨询与建议

限定检索结果

文献类型

  • 53 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 69 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 54 篇 工学
    • 42 篇 计算机科学与技术...
    • 32 篇 软件工程
    • 5 篇 电气工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 3 篇 光学工程
    • 3 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
  • 25 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 13 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 18 篇 理学
    • 11 篇 数学
    • 6 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 4 篇 系统科学
    • 2 篇 化学
    • 1 篇 海洋科学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 军事学

主题

  • 4 篇 benchmarking
  • 4 篇 linguistics
  • 3 篇 graph neural net...
  • 3 篇 computational li...
  • 3 篇 semantics
  • 2 篇 reliability
  • 2 篇 reinforcement le...
  • 2 篇 signal processin...
  • 2 篇 scattering param...
  • 2 篇 speech processin...
  • 2 篇 acoustics
  • 2 篇 digital storage
  • 2 篇 natural language...
  • 2 篇 generators
  • 2 篇 crowdsourcing
  • 1 篇 satellite naviga...
  • 1 篇 differential sys...
  • 1 篇 knowledge based ...
  • 1 篇 adaptation
  • 1 篇 friction compens...

机构

  • 37 篇 institute for ad...
  • 11 篇 school of inform...
  • 11 篇 renmin universit...
  • 7 篇 center for llm i...
  • 5 篇 university of sc...
  • 5 篇 center for machi...
  • 4 篇 institute of nat...
  • 4 篇 northeastern uni...
  • 4 篇 school of mathem...
  • 4 篇 institute of adv...
  • 4 篇 key laboratory o...
  • 4 篇 guanghua school ...
  • 4 篇 xiangjiang labor...
  • 4 篇 peking universit...
  • 4 篇 state key labora...
  • 4 篇 national enginee...
  • 4 篇 institute of com...
  • 3 篇 shanghai jiao to...
  • 3 篇 key lab of high ...
  • 3 篇 meituan

作者

  • 35 篇 li zhiyu
  • 29 篇 xiong feiyu
  • 23 篇 tang bo
  • 17 篇 song shichao
  • 15 篇 niu simin
  • 12 篇 wang hanyu
  • 10 篇 liang xun
  • 7 篇 yang jiawei
  • 5 篇 zhang zhongwang
  • 5 篇 zheng zifan
  • 5 篇 yu qingchen
  • 5 篇 xu zhi-qin john
  • 5 篇 zhang wentao
  • 4 篇 yu yu
  • 4 篇 chen ding
  • 4 篇 deng haiying
  • 4 篇 zhang sensen
  • 4 篇 wang wenjin
  • 4 篇 weinan e.
  • 4 篇 lin pengxiao

语言

  • 53 篇 英文
  • 16 篇 其他
检索条件"机构=Institute of Advanced Algorithms Research"
69 条 记 录,以下是11-20 订阅
排序:
COMPARE SIMILARITIES BETWEEN DNA SEQUENCES USING PERMUTATION-INVARIANT QUANTUM KERNEL
arXiv
收藏 引用
arXiv 2025年
作者: Shi, Chenyu Leoni, Gabriele Petrillo, Mauro Gallardo, Antonio Puertas Wang, Hao Applied Quantum Algorithms Leiden Leiden University Netherlands Leiden Institute of Advanced Computer Science Leiden University Netherlands Joint Research Centre Directorate F Health and Food Digital Health Unit European Commission Seidor Seidor Italy S.r.l. Milan Italy
Computing the similarity between two DNA sequences is of vital importance in bioscience. However, traditional computational methods can be resource-intensive due to the enormous sequence length encountered in practice... 详细信息
来源: 评论
REASONING BIAS OF NEXT TOKEN PREDICTION TRAINING
arXiv
收藏 引用
arXiv 2025年
作者: Lin, Pengxiao Zhang, Zhongwang Xu, Zhi-Qin John Institute of Natural Sciences MOE-LSC Shanghai Jiao Tong University China School of Mathematical Sciences Shanghai Jiao Tong University China School of Artificial Intelligence Shanghai Jiao Tong University China Key Laboratory of Marine Intelligent Equipment and System Ministry of Education China Center for LLM Institute for Advanced Algorithms Research Shanghai China
Since the inception of Large Language Models (LLMs), the quest to efficiently train them for superior reasoning capabilities has been a pivotal challenge. The dominant training paradigm for LLMs is based on next token... 详细信息
来源: 评论
AN ANALYSIS FOR REASONING BIAS OF LANGUAGE MODELS WITH SMALL INITIALIZATION
arXiv
收藏 引用
arXiv 2025年
作者: Yao, Junjie Zhang, Zhongwang Xu, Zhi-Qin John Institute of Natural Sciences MOE-LSC Shanghai Jiao Tong University China School of Mathematical Sciences Shanghai Jiao Tong University China School of Artificial Intelligence Shanghai Jiao Tong University China Key Laboratory of Marine Intelligent Equipment and System Ministry of Education China Center for LLM Institute for Advanced Algorithms Research Shanghai China
Transformer-based Large Language Models (LLMs) have revolutionized Natural Language Processing by demonstrating exceptional performance across diverse tasks. This study investigates the impact of the parameter initial... 详细信息
来源: 评论
Complexity Control Facilitates Reasoning-Based Compositional Generalization in Transformers
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Zhongwang Lin, Pengxiao Wang, Zhiwei Zhang, Yaoyu Xu, Zhi-Qin John The Institute of Natural Sciences School of Mathematical Sciences MOE-LSC Shanghai Jiao Tong University Shanghai200240 China The School of Artificial Intelligence Shanghai Jiao Tong University Shanghai200240 China The School of Artificial Intelligence Shanghai Jiao Tong University Center for LLM Institute for Advanced Algorithms Research Shanghai Seres Information Technology Co. Ltd. Shanghai200040 China
Transformers have demonstrated impressive capabilities across various tasks, yet their performance on compositional problems remains a subject of debate. In this study, we investigate the internal mechanisms underlyin... 详细信息
来源: 评论
Efficient Qubit Calibration by Binary-Search Hamiltonian Tracking
arXiv
收藏 引用
arXiv 2025年
作者: Berritta, Fabrizio Benestad, Jacob Pahl, Lukas Mathews, Melvin Krzywda, Jan A. Assouly, Réouven Sung, Youngkyu Kim, David K. Niedzielski, Bethany M. Serniak, Kyle Schwartz, Mollie E. Yoder, Jonilyn L. Chatterjee, Anasua Grover, Jeffrey A. Danon, Jeroen Oliver, William D. Kuemmeth, Ferdinand Research Laboratory of Electronics Massachusetts Institute of Technology CambridgeMA02139 United States Center for Quantum Devices Niels Bohr Institute University of Copenhagen Copenhagen2100 Denmark Center for Quantum Spintronics Department of Physics Norwegian University of Science and Technology TrondheimNO-7491 Norway Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA02139 United States Department of Information Technology and Electrical Engineering ETH Zürich Zürich8093 Switzerland 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical Physics & Leiden Institute of Advanced Computer Science Universiteit Leiden Netherlands Lincoln Laboratory Massachusetts Institute of Technology LexingtonMA02421 United States QuTech and Kavli Institute of Nanoscience Delft University of Technology Delft Netherlands Department of Physics Massachusetts Institute of Technology CambridgeMA02139 United States Institute of Experimental and Applied Physics University of Regensburg Regensburg93040 Germany QDevil Quantum Machines Ballerup2750 Denmark
We present a real-time method for calibrating the frequency of a resonantly driven qubit. The real-time processing capabilities of a classical controller dynamically generate adaptive probing sequences for qubit-frequ... 详细信息
来源: 评论
RARE: Retrieval-Augmented Reasoning Modeling
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Zhengren Yu, Jiayang Ma, Dongsheng Chen, Zhe Wang, Yu Li, Zhiyu Xiong, Feiyu Wang, Yanfeng Weinan, E. Tang, Linpeng Zhang, Wentao Peking University China Shanghai Jiao Tong University China Northeastern University China Nankai University China Institute for Advanced Algorithms Research Shanghai China OriginHub Technology United States MemTensor China Shanghai Artificial Intelligence Laboratory China
Domain-specific intelligence demands specialized knowledge and sophisticated reasoning for problem-solving, posing significant challenges for large language models (LLMs) that struggle with knowledge hallucination and... 详细信息
来源: 评论
OFF-POLICY PRIMAL-DUAL SAFE REINFORCEMENT LEARNING  12
OFF-POLICY PRIMAL-DUAL SAFE REINFORCEMENT LEARNING
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Wu, Zifan Tang, Bo Lin, Qian Yu, Chao Mao, Shangqin Xie, Qianlong Wang, Xingxing Wang, Dong Sun Yat-Sen University Guangzhou China Institute for Advanced Algorithms Research Shanghai China Meituan Beijing China
Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative... 详细信息
来源: 评论
FastMem: Fast Memorization of Prompt Improves Context Awareness of Large Language Models
FastMem: Fast Memorization of Prompt Improves Context Awaren...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Zhu, Junyi Liu, Shuochen Yu, Yu Tang, Bo Yan, Yibo Li, Zhiyu Xiong, Feiyu Xu, Tong Blaschko, Matthew B. ESAT-PSI KU Leuven Belgium University of Science and Technology of China China Institute for Advanced Algorithms Research Shanghai China National University of Singapore Singapore
Large language models (LLMs) excel in generating coherent text, but they often struggle with context awareness, leading to inaccuracies in tasks requiring faithful adherence to provided information. We introduce FastM... 详细信息
来源: 评论
UHGEval: Benchmarking the Hallucination of Chinese Large Language Models via Unconstrained Generation  62
UHGEval: Benchmarking the Hallucination of Chinese Large Lan...
收藏 引用
62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
作者: Liang, Xun Song, Shichao Niu, Simin Li, Zhiyu Xiong, Feiyu Tang, Bo Wang, Yezhaohui He, Dawei Cheng, Peng Wang, Zhonghao Deng, Haiying School of Information Renmin University of China Beijing China Institute for Advanced Algorithms Research Shanghai China State Key Laboratory of Media Convergence Production Technology and Systems Beijing China
Large language models (LLMs) produce hallucinated text, compromising their practical utility in professional contexts. To assess the reliability of LLMs, numerous initiatives have developed benchmark evaluations for h... 详细信息
来源: 评论
Learning Free Terminal Time Optimal Closed-loop Control of Manipulators with Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Hu, Wei Zhao, Yue Weinan, E. Han, Jiequn Long, Jihao AI for Science Institute Beijing and Institute for Advanced Algorithms Research Shanghai China Peking University Beijing China Flatiron Institute New York United States Institute for Advanced Algorithms Research Shanghai China
This paper presents a novel approach to learning free terminal time closed-loop control for robotic manipulation tasks, enabling dynamic adjustment of task duration and control inputs to enhance performance. We extend... 详细信息
来源: 评论