咨询与建议

限定检索结果

文献类型

  • 1,058 篇 会议
  • 603 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,664 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,055 篇 工学
    • 814 篇 计算机科学与技术...
    • 720 篇 软件工程
    • 193 篇 信息与通信工程
    • 117 篇 控制科学与工程
    • 101 篇 机械工程
    • 96 篇 生物工程
    • 60 篇 光学工程
    • 49 篇 生物医学工程(可授...
    • 46 篇 电气工程
    • 46 篇 化学工程与技术
    • 43 篇 电子科学与技术(可...
    • 34 篇 仪器科学与技术
    • 26 篇 农业工程
    • 21 篇 建筑学
    • 20 篇 动力工程及工程热...
    • 19 篇 土木工程
    • 19 篇 交通运输工程
  • 530 篇 理学
    • 345 篇 数学
    • 121 篇 生物学
    • 116 篇 物理学
    • 95 篇 统计学(可授理学、...
    • 42 篇 化学
    • 33 篇 系统科学
  • 357 篇 管理学
    • 226 篇 图书情报与档案管...
    • 139 篇 管理科学与工程(可...
    • 34 篇 工商管理
  • 43 篇 医学
    • 33 篇 临床医学
    • 24 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 26 篇 法学
    • 21 篇 社会学
  • 14 篇 经济学
  • 11 篇 教育学
  • 10 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 2 篇 军事学

主题

  • 89 篇 semantics
  • 86 篇 feature extracti...
  • 76 篇 information proc...
  • 62 篇 laboratories
  • 59 篇 training
  • 56 篇 computers
  • 49 篇 face recognition
  • 43 篇 humans
  • 39 篇 visualization
  • 35 篇 data mining
  • 33 篇 computational mo...
  • 30 篇 computer vision
  • 29 篇 machine learning
  • 27 篇 object detection
  • 27 篇 support vector m...
  • 27 篇 image segmentati...
  • 26 篇 decoding
  • 25 篇 robustness
  • 24 篇 artificial intel...
  • 24 篇 data models

机构

  • 435 篇 key laboratory o...
  • 283 篇 university of ch...
  • 83 篇 key laboratory o...
  • 64 篇 key lab of intel...
  • 62 篇 peng cheng labor...
  • 51 篇 key lab of intel...
  • 48 篇 key laboratory o...
  • 47 篇 graduate univers...
  • 46 篇 key laboratory o...
  • 46 篇 the key laborato...
  • 44 篇 school of comput...
  • 43 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 34 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 institute of dig...
  • 26 篇 national enginee...
  • 24 篇 school of comput...
  • 24 篇 graduate school ...

作者

  • 106 篇 zhongzhi shi
  • 103 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 79 篇 liu qun
  • 76 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 42 篇 he qing
  • 40 篇 feng yang
  • 38 篇 li hua
  • 38 篇 wen gao
  • 35 篇 yang zhiyong
  • 35 篇 zhuge hai
  • 33 篇 jiang shuqiang
  • 32 篇 cao juan
  • 30 篇 liu yang
  • 30 篇 zhuang fuzhen
  • 30 篇 cao xiaochun
  • 29 篇 qingming huang

语言

  • 1,554 篇 英文
  • 72 篇 其他
  • 41 篇 中文
检索条件"机构=Institute of Affective Computing and Intelligent Information Processing"
1664 条 记 录,以下是171-180 订阅
排序:
Development of a Universal RNA Dual-Terminal Labeling Method for Sensing RNA-Ligand Interactions
收藏 引用
CCS Chemistry 2023年 第1期5卷 221-233页
作者: Longhuai Cheng Dejun Ma Jie Zhang Xueying Kang Yang Wu Yi Zhao Long Yi Zhen Xi State Key Laboratory of Elemento-Organic Chemistry Department of Chemical BiologyCollege of ChemistryNational Pesticide Engineering Research CenterCollaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin 300071 State Key Laboratory of Organic-Inorganic Composites and Beijing Key Laboratory of Bioprocess Beijing University of Chemical Technology(BUCT)Beijing 100029 Key Laboratory of Intelligent Information Processing Research Center for Ubiquitous Computing SystemsInstitute of Computing TechnologyChinese Academy of SciencesBeijing 100190
Dual labeling of an RNA can provide Förster resonance energy transfer(FRET)sensors for studying RNA folding,miRNA maturation,and RNA-protein ***,we report the development of a highly efficient strategy for direct... 详细信息
来源: 评论
Text-Driven Generative Domain Adaptation with Spectral Consistency Regularization
Text-Driven Generative Domain Adaptation with Spectral Consi...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Zhenhuan Liu Liang Li Jiayu Xiao Zheng-Jun Zha Qingming Huang Institute of Computing Technology Key Laboratory of Intelligent Information Processing CAS University of Chinese Academy of Sciences University of Science and Technology of China Peng Cheng Laboratory
Combined with the generative prior of pre-trained models and the flexibility of text, text-driven generative domain adaptation can generate images from a wide range of target domains. However, current methods still su...
来源: 评论
Integrating Multi-scale Contextualized information for Byte-based Neural Machine Translation
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Langlin Feng, Yang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China Key Laboratory of AI Safety Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models. However, increasingly complex tasks have revealed its disadvantages. First, a vocabulary cannot be modified o... 详细信息
来源: 评论
Combination of graphics, uncertainty, and semantics: A survey
Combination of graphics, uncertainty, and semantics: A surve...
收藏 引用
作者: Gao, Yuan Rafi, Muhammad Adnan Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China Department of Computer Science Aston University Birmingham United Kingdom
Graphics, uncertainty, and semantics are three approaches to building models. The combination of the three approaches is a way to develop a stronger modeling method. This article surveys the research efforts toward co... 详细信息
来源: 评论
Variational Clustering and Denoising of Spatial Transcriptomics
Variational Clustering and Denoising of Spatial Transcriptom...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Li, Cuiyuan Zhang, Fa Hu, Kai Cui, Xuefeng Shandong University School of Computer Science and Technology Qingdao China Beijing Institute of Technology School of Medical Technology Beijing China Xiangtan University Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan China Xiangnan University Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province Chenzhou China
Spatial transcriptomics data provides a unique opportunity to investigate both gene expression and spatial structure in tissues at the same time. However, incorporating spatial information to accurately identify spati... 详细信息
来源: 评论
Variant quantifiers in L_(3)-valued first-order logic
收藏 引用
Frontiers of Computer Science 2021年 第5期15卷 151-159页
作者: Wei LI Yuefei SUI State Key Laboratory of Software Development Environment Beihang UniversityBeijing 100083China Key Laboratory of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China School of Computer Science and Technology University of Chinese Academy of SciencesBeijing 100049China
Traditional first-order logic has four definitions for quantifiers,which are defined by universal and existential *** L_(3)-valued(three-valued)first-order logic,there are eight kinds of definitions for quantifiers;an... 详细信息
来源: 评论
Facial Expression Recognition With Vision Transformer Using Fused Shifted Windows
收藏 引用
IEEE Transactions on affective computing 2024年
作者: Sun, Xiao Wang, Rui Chen, Shaokai Wang, Meng Hefei University of Technology Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machines School of Computer Science and Information Engineering China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei China University of Science and Technology of China Institute of Advanced Technology China Hefei University of Technology School of Computer Science and Information Engineering Hefei China
Facial expressions contain massive affective information. Previous methods have focused on using diverse models based on CNN or Transformer to handle the facial expression recognition(FER) task. However, most of them ... 详细信息
来源: 评论
SELF-SUPERVISED DIFFUSION MRI DENOISING VIA ITERATIVE AND STABLE REFINEMENT
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Chenxu Kong, Qingpeng Jiang, Zihang Kevin Zhou, S. School of Biomedical Engineering Division of Life Sciences and Medicine USTC China MIRACLE Center Suzhou Institute for Advance Research USTC China State Key Laboratory of Precision and Intelligent Chemistry USTC China Key Laboratory of Intelligent Information Processing of CAS Institute of Computing Technology CAS China
Magnetic Resonance Imaging (MRI), including diffusion MRI (dMRI), serves as a "microscope" for anatomical structures and routinely mitigates the influence of low signal-to-noise ratio scans by compromising t... 详细信息
来源: 评论
DASC-SPT: Towards Self-Supervised Panoramic Semantic Segmentation
DASC-SPT: Towards Self-Supervised Panoramic Semantic Segment...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Tianlong Tan Bin Chen Hongliang Cao Chenggang Yan Yike Ma Feng Dai Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences Institute of Computing Technology Chinese Academy of Sciences Beijing China Shandong University University of Chinese Academy of Sciences Beijing China Hangzhou Dianzi University
Self-Supervised Semantic Segmentation, aiming to leverage masses of unlabeled data for boosting semantic segmentation, has been rapidly emerging as an active task in recent years. However, existing self-supervised sem... 详细信息
来源: 评论
Top-ambiguity samples matter: understanding why deep ensemble works in selective classification  23
Top-ambiguity samples matter: understanding why deep ensembl...
收藏 引用
Proceedings of the 37th International Conference on Neural information processing Systems
作者: Qiang Ding Yixuan Cao Ping Luo Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China and University of Chinese Academy of Sciences Beijing China Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China and University of Chinese Academy of Sciences Beijing China and Peng Cheng Laboratory Shenzhen China
Selective classification allows a machine learning model to reject some hard inputs and thus improve the reliability of its predictions. In this area, the ensemble method is powerful in practice, but there has been no...
来源: 评论