咨询与建议

限定检索结果

文献类型

  • 1,064 篇 会议
  • 606 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,673 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,065 篇 工学
    • 822 篇 计算机科学与技术...
    • 721 篇 软件工程
    • 194 篇 信息与通信工程
    • 127 篇 控制科学与工程
    • 101 篇 机械工程
    • 98 篇 生物工程
    • 58 篇 光学工程
    • 51 篇 生物医学工程(可授...
    • 46 篇 化学工程与技术
    • 45 篇 电气工程
    • 43 篇 电子科学与技术(可...
    • 35 篇 仪器科学与技术
    • 26 篇 农业工程
    • 20 篇 动力工程及工程热...
    • 20 篇 建筑学
    • 19 篇 交通运输工程
    • 18 篇 土木工程
  • 531 篇 理学
    • 343 篇 数学
    • 121 篇 生物学
    • 117 篇 物理学
    • 95 篇 统计学(可授理学、...
    • 45 篇 化学
    • 33 篇 系统科学
  • 356 篇 管理学
    • 226 篇 图书情报与档案管...
    • 138 篇 管理科学与工程(可...
    • 33 篇 工商管理
  • 45 篇 医学
    • 35 篇 临床医学
    • 24 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 26 篇 法学
    • 21 篇 社会学
  • 14 篇 经济学
  • 10 篇 教育学
  • 10 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 2 篇 军事学

主题

  • 89 篇 semantics
  • 86 篇 feature extracti...
  • 76 篇 information proc...
  • 62 篇 laboratories
  • 59 篇 training
  • 56 篇 computers
  • 49 篇 face recognition
  • 43 篇 humans
  • 39 篇 visualization
  • 35 篇 data mining
  • 33 篇 computational mo...
  • 30 篇 computer vision
  • 29 篇 machine learning
  • 27 篇 object detection
  • 27 篇 support vector m...
  • 27 篇 image segmentati...
  • 26 篇 decoding
  • 25 篇 robustness
  • 24 篇 artificial intel...
  • 24 篇 data models

机构

  • 439 篇 key laboratory o...
  • 286 篇 university of ch...
  • 83 篇 key laboratory o...
  • 64 篇 key lab of intel...
  • 62 篇 peng cheng labor...
  • 52 篇 key lab of intel...
  • 49 篇 key laboratory o...
  • 47 篇 graduate univers...
  • 46 篇 key laboratory o...
  • 46 篇 the key laborato...
  • 44 篇 school of comput...
  • 43 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 34 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 institute of dig...
  • 26 篇 national enginee...
  • 24 篇 school of comput...
  • 24 篇 graduate school ...

作者

  • 106 篇 zhongzhi shi
  • 103 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 79 篇 liu qun
  • 76 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 44 篇 he qing
  • 41 篇 feng yang
  • 38 篇 li hua
  • 38 篇 wen gao
  • 35 篇 yang zhiyong
  • 35 篇 zhuge hai
  • 32 篇 jiang shuqiang
  • 32 篇 cao juan
  • 30 篇 liu yang
  • 30 篇 zhuang fuzhen
  • 30 篇 cao xiaochun
  • 29 篇 qingming huang

语言

  • 1,546 篇 英文
  • 89 篇 其他
  • 41 篇 中文
检索条件"机构=Institute of Affective Computing and Intelligent Information Processing"
1673 条 记 录,以下是241-250 订阅
排序:
DEGSTalk: Decomposed Per-Embedding Gaussian Fields for Hair-Preserving Talking Face Synthesis
DEGSTalk: Decomposed Per-Embedding Gaussian Fields for Hair-...
收藏 引用
International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Kaijun Deng Dezhi Zheng Jindong Xie Jinbao Wang Weicheng Xie Linlin Shen Siyang Song Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Guangdong Provincial Key Laboratory of Intelligent Information Processing Department of Computer Science University of Exeter
Accurately synthesizing talking face videos and capturing fine facial features for individuals with long hair presents a significant challenge. To tackle these challenges in existing methods, we propose a decomposed p... 详细信息
来源: 评论
CoSign: Exploring Co-occurrence Signals in Skeleton-based Continuous Sign Language Recognition
CoSign: Exploring Co-occurrence Signals in Skeleton-based Co...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Peiqi Jiao Yuecong Min Yanan Li Xiaotao Wang Lei Lei Xilin Chen Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Xiaomi Inc. China
The co-occurrence signals (e.g., hand shape, facial expression, and lip pattern) play a critical role in Continuous Sign Language Recognition (CSLR). Compared to RGB data, skeleton data provide a more efficient and co...
来源: 评论
Investigation on ULA Fitting Promoting Low Coupling Sparse Arrays
Investigation on ULA Fitting Promoting Low Coupling Sparse A...
收藏 引用
2022 International Applied Computational Electromagnetics Society Symposium, ACES-China 2022
作者: Yao, Yichang Shi, Wanlu Li, Yingsong Huang, Zhixiang Yang, Guohui Zhang, Kuang Harbin Engineering University College of Information and Communication Engineering Harbin150001 China Anhui Province Key Laboratory of Target Recognition and Feature Extraction LuAn230088 China Anhui University Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education China School of Electronics and Information Engineering Harbin Institute of Technology Harbin150086 China
A low coupling sparse array (LCSA) is presented, analyzed and discussed on the basis of the recent proposed uniform linear array (ULA) fitting scheme with close-expressions, and its performance with different uniform ... 详细信息
来源: 评论
Fixation guided network for salient object detection  2
Fixation guided network for salient object detection
收藏 引用
2nd ACM International Conference on Multimedia in Asia, MMAsia 2020
作者: Cui, Zhe Su, Li Zhang, Weigang Huang, Qingming University of Chinese Academy of Sciences China Harbin Institute of Technology Weihai China University of Chinese Academy of Sciences Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China
Convolutional neural network (CNN) based salient object detection (SOD) has achieved great development in recent years. However, in some challenging cases, i.e. small-scale salient object, low contrast salient object ... 详细信息
来源: 评论
Patch Is Not All You Need
arXiv
收藏 引用
arXiv 2023年
作者: Li, Changzhen Zhang, Jie Wei, Yang Ji, Zhilong Bai, Jinfeng Shan, Shiguang Key Lab of Intelligent Information Processing Chinese Academy of Sciences Institute of Computing Technology China University of Chinese Academy of Sciences China Hangzhou lnstitute for Advanced Study UCAS School of Intelligent Scienceand Technology China Tomorrow Advancing Life China
Vision Transformers have achieved great success in computer visions, delivering exceptional performance across various tasks. However, their inherent reliance on sequential input enforces the manual partitioning of im... 详细信息
来源: 评论
PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery
PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust ...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Wendi Yang Zihang Jiang Shang Zhao S. Kevin Zhou Division of Life Sciences and Medicine School of Biomedical Engineering University of Science and Technology of China (USTC) Hefei Anhui China Center for Medical Imaging Robotics Analytic Computing & Learning (MIRACLE) Suzhou Institute for Advance Research USTC Suzhou Jiangsu China Key Laboratory of Precision and Intelligent Chemistry USTC Hefei Anhui China Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS
With the recent advancements in single-image-based 3D human pose and shape estimation (3DHPSE), there is a growing amount of works that can achieve good results on standard benchmarks but struggle to yield accurate hu... 详细信息
来源: 评论
A Semantic Link Network Model for Supporting Traceability of Logistics on Blockchain
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Xiaoping Zhuge, Sirui Zhuge, Hai Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China King’s College London United Kingdom Publicis Sapient London United Kingdom Great Bay University Dongguan China Great Bay Institute for Advanced Study Dongguan China
The ability of tracing states of logistic transportations requires an efficient storage and retrieval of the state of logistic transportations and locations of logistic objects. However, the restriction of sharing sta...
来源: 评论
Editing Memories Through Few Targeted Neurons  39
Editing Memories Through Few Targeted Neurons
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Zhou, Wei Wei, Wei Cao, Guibang Wang, Fei Cognitive Computing and Intelligent Information Processing (CCIIP) Laboratory School of Computer Science and Technology Huazhong University of Science and Technology China Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL) China Ping An Property & Casualty Insurance Company of China Ltd China Institute of Computing Technology Chinese Academy of Sciences China
Model editing is a novel research topic in large language models (LLMs), aimed at efficiently handling various knowledge editing tasks. Since irrelevant knowledge is difficult to measure, existing editing methods ofte... 详细信息
来源: 评论
NetPrompt: Neural Network Prompting Enhances Event Extraction in Large Language Models
收藏 引用
IEEE Transactions on Big Data 2025年
作者: Mu, Lin Cheng, Yide Shen, Jun Zhang, Yiwen Zhong, Hong School of Computer Science and Technology Anhui University Anhui Hefei230601 China The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education the Anhui Engineering Laboratory of IoT Security Technologies the School of Computer Science and Technology the Institute of Physical Science and Information Technology Anhui University Hefei230039 China
Event Extraction involves extracting event-related information such as event types and event arguments from context, which has long been tackled through well-designed neural networks or fine-tuned pre-trained language... 详细信息
来源: 评论
Bidirectional Logits Tree: Pursuing Granularity Reconcilement in Fine-Grained Classification  39
Bidirectional Logits Tree: Pursuing Granularity Reconcilemen...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Lu, Zhiguang Xu, Qianqian Bao, Shilong Yang, Zhiyong Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China School of Computer Science and Technology University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management University of Chinese Academy of Sciences China
This paper addresses the challenge of Granularity Competition in fine-grained classification tasks, which arises due to the semantic gap between multi-granularity labels. Existing approaches typically develop independ...
来源: 评论