咨询与建议

限定检索结果

文献类型

  • 654 篇 期刊文献
  • 111 篇 会议
  • 5 册 图书

馆藏范围

  • 770 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 607 篇 理学
    • 513 篇 数学
    • 140 篇 物理学
    • 72 篇 统计学(可授理学、...
    • 66 篇 系统科学
    • 36 篇 生物学
    • 33 篇 化学
    • 16 篇 地球物理学
  • 363 篇 工学
    • 145 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 64 篇 电子科学与技术(可...
    • 63 篇 力学(可授工学、理...
    • 57 篇 控制科学与工程
    • 47 篇 电气工程
    • 45 篇 信息与通信工程
    • 32 篇 动力工程及工程热...
    • 31 篇 生物工程
    • 29 篇 材料科学与工程(可...
    • 28 篇 化学工程与技术
    • 16 篇 生物医学工程(可授...
    • 13 篇 光学工程
    • 12 篇 机械工程
    • 10 篇 仪器科学与技术
    • 8 篇 土木工程
    • 6 篇 冶金工程
    • 6 篇 建筑学
  • 43 篇 管理学
    • 35 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 16 篇 医学
    • 14 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 5 篇 经济学
  • 5 篇 农学
  • 4 篇 法学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 32 篇 finite element m...
  • 16 篇 numerical method...
  • 13 篇 eigenvalues and ...
  • 13 篇 convergence
  • 11 篇 finite
  • 10 篇 computational mo...
  • 10 篇 stochastic syste...
  • 10 篇 global convergen...
  • 9 篇 deep neural netw...
  • 9 篇 partial differen...
  • 8 篇 inverse problems
  • 8 篇 unconstrained op...
  • 8 篇 beamforming
  • 7 篇 boundary integra...
  • 7 篇 method
  • 7 篇 optimization
  • 7 篇 conjugate gradie...
  • 7 篇 element
  • 7 篇 polynomials
  • 7 篇 equations

机构

  • 87 篇 school of mathem...
  • 80 篇 lsec institute o...
  • 68 篇 institute of com...
  • 37 篇 state key labora...
  • 22 篇 the state key la...
  • 19 篇 university of ch...
  • 19 篇 lsec institute o...
  • 18 篇 lsec institute o...
  • 15 篇 institute of com...
  • 11 篇 institute of app...
  • 10 篇 lsec ncmis insti...
  • 9 篇 school of mathem...
  • 9 篇 lsec institute o...
  • 9 篇 school of mathem...
  • 9 篇 institute of com...
  • 8 篇 institute of com...
  • 8 篇 school of mathem...
  • 8 篇 beijing computat...
  • 8 篇 department of ma...
  • 7 篇 department of ma...

作者

  • 54 篇 liu ya-feng
  • 32 篇 zhou tao
  • 23 篇 zhou aihui
  • 21 篇 yu haijun
  • 18 篇 zhang shuo
  • 16 篇 ming pingbing
  • 15 篇 yuan ya-xiang
  • 14 篇 wensheng zhang
  • 13 篇 dai xiaoying
  • 13 篇 yin tao
  • 13 篇 hong jialin
  • 10 篇 zheng weiying
  • 10 篇 pingbing ming
  • 10 篇 ya-xiang yuan
  • 9 篇 tang tao
  • 9 篇 sun liying
  • 9 篇 bai zz
  • 8 篇 dai yu-hong
  • 8 篇 tao zhou
  • 8 篇 jiang bo

语言

  • 740 篇 英文
  • 27 篇 其他
  • 3 篇 中文
检索条件"机构=Institute of Computational Math and Scientific/Engineering Computing"
770 条 记 录,以下是1-10 订阅
排序:
Adaptive cyclic gradient methods with interpolation
收藏 引用
computational Optimization and Applications 2025年 1-25页
作者: Xie, Yixin Sun, Cong Yuan, Ya-Xiang Beijing100876 China Ministry of Education Beijing100876 China State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and System Sciences Chinese Academy of Sciences Beijing100190 China
Gradient method is an important method for solving large scale problems. In this paper, a new gradient method framework for unconstrained optimization problem is proposed, where the stepsize is updated in a cyclic way... 详细信息
来源: 评论
A Derivative-Free Optimization Algorithm Combining Line-Search and Trust-Region Techniques
收藏 引用
Chinese Annals of mathematics,Series B 2023年 第5期44卷 719-734页
作者: Pengcheng XIE Ya-xiang YUAN State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematicsand Scientific/Engineering ComputingAcademy of Mathematics and Systems ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing 100190China
The speeding-up and slowing-down(SUSD)direction is a novel direction,which is proved to converge to the gradient descent direction under some *** authors propose the derivative-free optimization algorithm SUSD-TR,whic... 详细信息
来源: 评论
A Deep Learning Method for computing Eigenvalues of the Fractional Schrödinger Operator
收藏 引用
Journal of Systems Science & Complexity 2024年 第2期37卷 391-412页
作者: GUO Yixiao MING Pingbing LSEC Institute of Computational Mathematics and Scientific/Engineering ComputingAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China School of Mathematical Sciences University of Chinese Academy of SciencesBeijing 100049China
The authors present a novel deep learning method for computing eigenvalues of the fractional Schrödinger *** proposed approach combines a newly developed loss function with an innovative neural network architectu... 详细信息
来源: 评论
STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS
收藏 引用
Journal of computational mathematics 2022年 第2期40卷 294-334页
作者: Xiaoyu Wang Ya-xiang Yuan Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China University of Chinese Academy of Sciences Beijing 100049China State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematics and Scientific/Engineering ComputingAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China
We present a stochastic trust-region model-based framework in which its radius is related to the probabilistic ***,we propose a specific algorithm termed STRME,in which the trust-region radius depends linearly on the ... 详细信息
来源: 评论
Solving Time Dependent Fokker-Planck Equations via Temporal Normalizing Flow
收藏 引用
Communications in computational Physics 2022年 第7期32卷 401-423页
作者: Xiaodong Feng Li Zeng Tao Zhou LSEC Institute of Computational Mathematics and Scientific/Engineering ComputingAMSSChinese Academy of SciencesBeijingChina
In this work,we propose an adaptive learning approach based on temporal normalizing flows for solving time-dependent Fokker-Planck(TFP)*** is well known that solutions of such equations are probability density functio... 详细信息
来源: 评论
A VARIATIONAL ANALYSIS FOR THE MOVING FINITE ELEMENT METHOD FOR GRADIENTFLOWS
收藏 引用
Journal of computational mathematics 2023年 第2期41卷 191-210页
作者: Xianmin Xu LSEC Institute of Computational Mathematics and Scientific/Engineering ComputingNCMISAMSSChinese Academy of SciencesBeijing 100190China School of Mathematical Sciences University of Chinese Academy of SciencesBeijing 100049China
By using the Onsager principle as an approximation tool,we give a novel derivation for the moving finite element method for gradient flow *** show that the discretized problem has the same energy dissipation structure... 详细信息
来源: 评论
MC-Nonlocal-PINNs:Handling Nonlocal Operators in PINNs Via Monte Carlo Sampling
收藏 引用
Numerical mathematics(Theory,Methods and Applications) 2023年 第3期16卷 769-791页
作者: Xiaodong Feng Yue Qian Wanfang Shen Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina Shandong Key Laboratory of Blockchain Finance Shandong University of Finance and EconomicsJinan 250014China
We propose Monte Carlo Nonlocal physics-informed neural networks(MC-Nonlocal-PINNs),which are a generalization of MC-fPINNs in *** et al.(*** ***.400(2022),115523)for solving general nonlocal models such as integral e... 详细信息
来源: 评论
Convergent and Orthogonality Preserving Schemes for Approximating the Kohn-Sham Orbitals
收藏 引用
Numerical mathematics(Theory,Methods and Applications) 2023年 第1期16卷 1-25页
作者: Xiaoying Dai Liwei Zhang Aihui Zhou LSEC Institute of Computational Mathematics and Scientific/Engineering ComputingAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China School of Mathematical Sciences University of Chinese Academy of SciencesBeijing 100049China
To obtain convergent numerical approximations without using any orthogonalization operations is of great importance in electronic structure *** this paper,we propose and analyze a class of iteration schemes for the di... 详细信息
来源: 评论
A New Sixth-Order WENO Scheme for Solving Hyperbolic Conservation Laws
收藏 引用
Communications on Applied mathematics and Computation 2023年 第1期5卷 3-30页
作者: Kunlei Zhao Yulong Du Li Yuan State Key Laboratory of Scientific and Engineering Computing(LSEC)and Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China School of Mathematical Sciences University of Chinese Academy of SciencesBeijing 100190China School of Mathematical Sciences Beihang UniversityBeijing 100191China
In this paper,we develop a new sixth-order WENO scheme by adopting a convex combina-tion of a sixth-order global reconstruction and four low-order local *** the classical WENO schemes,the associated linear weights of ... 详细信息
来源: 评论
A Derivative-free Trust-region Method for Optimization on the Ellipsoid
A Derivative-free Trust-region Method for Optimization on th...
收藏 引用
2023 International Conference on Advances in Computer Science and engineering Technology, ACSE 2023
作者: Xie, Pengcheng State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences University of Chinese Academy of Sciences ZhongGuanCun East Road No. 55 Beijing China
Optimization methods play a crucial role in various fields and applications. In some optimization problems, the derivative information of the objective function is unavailable. Such black-box optimization problems nee... 详细信息
来源: 评论