咨询与建议

限定检索结果

文献类型

  • 650 篇 期刊文献
  • 111 篇 会议
  • 5 册 图书

馆藏范围

  • 766 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 604 篇 理学
    • 510 篇 数学
    • 140 篇 物理学
    • 71 篇 统计学(可授理学、...
    • 66 篇 系统科学
    • 36 篇 生物学
    • 33 篇 化学
    • 16 篇 地球物理学
  • 361 篇 工学
    • 143 篇 计算机科学与技术...
    • 99 篇 软件工程
    • 64 篇 电子科学与技术(可...
    • 63 篇 力学(可授工学、理...
    • 57 篇 控制科学与工程
    • 47 篇 电气工程
    • 45 篇 信息与通信工程
    • 32 篇 动力工程及工程热...
    • 31 篇 生物工程
    • 29 篇 材料科学与工程(可...
    • 28 篇 化学工程与技术
    • 16 篇 生物医学工程(可授...
    • 13 篇 光学工程
    • 12 篇 机械工程
    • 10 篇 仪器科学与技术
    • 8 篇 土木工程
    • 6 篇 冶金工程
    • 6 篇 建筑学
  • 42 篇 管理学
    • 35 篇 管理科学与工程(可...
    • 6 篇 工商管理
    • 6 篇 图书情报与档案管...
  • 16 篇 医学
    • 14 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 5 篇 经济学
  • 5 篇 农学
  • 4 篇 法学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 32 篇 finite element m...
  • 15 篇 numerical method...
  • 13 篇 convergence
  • 12 篇 eigenvalues and ...
  • 11 篇 finite
  • 10 篇 computational mo...
  • 10 篇 stochastic syste...
  • 10 篇 global convergen...
  • 9 篇 deep neural netw...
  • 9 篇 partial differen...
  • 8 篇 inverse problems
  • 8 篇 unconstrained op...
  • 8 篇 beamforming
  • 7 篇 boundary integra...
  • 7 篇 method
  • 7 篇 optimization
  • 7 篇 conjugate gradie...
  • 7 篇 element
  • 7 篇 polynomials
  • 7 篇 equations

机构

  • 86 篇 school of mathem...
  • 79 篇 lsec institute o...
  • 68 篇 institute of com...
  • 37 篇 state key labora...
  • 22 篇 the state key la...
  • 19 篇 university of ch...
  • 19 篇 lsec institute o...
  • 18 篇 lsec institute o...
  • 15 篇 institute of com...
  • 11 篇 institute of app...
  • 10 篇 lsec ncmis insti...
  • 9 篇 school of mathem...
  • 9 篇 lsec institute o...
  • 9 篇 school of mathem...
  • 9 篇 institute of com...
  • 8 篇 institute of com...
  • 8 篇 school of mathem...
  • 8 篇 beijing computat...
  • 8 篇 department of ma...
  • 7 篇 department of ma...

作者

  • 54 篇 liu ya-feng
  • 31 篇 zhou tao
  • 23 篇 zhou aihui
  • 21 篇 yu haijun
  • 18 篇 zhang shuo
  • 16 篇 ming pingbing
  • 14 篇 yuan ya-xiang
  • 14 篇 wensheng zhang
  • 13 篇 dai xiaoying
  • 13 篇 yin tao
  • 13 篇 hong jialin
  • 10 篇 zheng weiying
  • 10 篇 pingbing ming
  • 10 篇 ya-xiang yuan
  • 9 篇 tang tao
  • 9 篇 sun liying
  • 9 篇 bai zz
  • 8 篇 dai yu-hong
  • 8 篇 tao zhou
  • 8 篇 jiang bo

语言

  • 737 篇 英文
  • 26 篇 其他
  • 3 篇 中文
检索条件"机构=Institute of Computational Math and Scientific/Engineering Computing"
766 条 记 录,以下是151-160 订阅
排序:
A PML method for signal-propagation problems in axon
arXiv
收藏 引用
arXiv 2022年
作者: Jiang, Xue Lyu, Maohui Yin, Tao Zheng, Weiying Department of Mathematics Faculty of Science Beijing University of Technology Beijing100124 China LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China
This work is focused on the modelling of signal propagations in myelinated axons to characterize the functions of the myelin sheath in the neural structure. Based on reasonable assumptions on the medium properties, we... 详细信息
来源: 评论
A hybrid FEM-PINN method for time-dependent partial differential equations
arXiv
收藏 引用
arXiv 2024年
作者: Feng, Xiaodong Shangguan, Haojiong Tang, Tao Wan, Xiaoliang Zhou, Tao Division of Science and Technology BNU-HKBU United International College Zhuhai519087 China School of Electrical and Computer Engineering Guangzhou Nanfang College Guangzhou510970 China Department of Mathematics Center for Computation and Technology Louisiana State University Baton Rouge70803 United States Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
In this work, we present a hybrid numerical method for solving evolution partial differential equations (PDEs) by merging the time finite element method with deep neural networks. In contrast to the conventional deep ... 详细信息
来源: 评论
MC-Nonlocal-PINNs: handling nonlocal operators in PINNs via Monte Carlo sampling
arXiv
收藏 引用
arXiv 2022年
作者: Feng, Xiaodong Qian, Yue Shen, Wanfang Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China Shandong Key Laboratory of Blockchain Finance Shandong University of Finance and Economics Jinan250014 China
We propose, Monte Carlo Nonlocal physics-informed neural networks (MC-Nonlocal-PINNs), which is a generalization of MC-fPINNs in [1], for solving general nonlocal models such as integral equations and nonlocal PDEs. S... 详细信息
来源: 评论
An Augmented Subspace Based Adaptive Proper Orthogonal Decomposition Method for Time Dependent Partial Differential Equations
arXiv
收藏 引用
arXiv 2023年
作者: Dai, Xiaoying Hu, Miao Xin, Jack Zhou, Aihui LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China Department of Mathematics University of California at Irvine IrvineCA92697 United States
In this paper, we propose an augmented subspace based adaptive proper orthogonal decomposition (POD) method for solving the time dependent partial differential equations. By augmenting the POD subspace with some auxil... 详细信息
来源: 评论
Detecting and Exploiting Unit Commitment Structures in MIPs
Detecting and Exploiting Unit Commitment Structures in MIPs
收藏 引用
International Conference on Power and Energy Technology (ICPET)
作者: Zhao-Gang Su Sheng-Jie Chen Yu-Fei Li Liang Chen Caixia Kou Zhi Cai Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China Institute of Applied Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China College of Sciences Beijing University of Posts and Telecommunications Beijing China Beijing Key Laboratory of Research and System Evaluation of Power Dispatching Automation Technology China Electric Power Research Institute Beijing China
The unit commitment (UC) problem has been extensively researched in the literature, which is typically formulated as a mixed integer programming (MIP) problem. However, current studies lack effective methods to identi... 详细信息
来源: 评论
POINTWISE ESTIMATES FOR THE FUNDAMENTAL SOLUTIONS OF HIGHER ORDER SCHRÖDINGER EQUATIONS IN ODD DIMENSIONS II: HIGH DIMENSIONAL CASE
arXiv
收藏 引用
arXiv 2024年
作者: Cheng, Han Huang, Shanlin Huang, Tianxiao Zheng, Quan Institute of Applied Physics and Computational Mathematics Beijing100088 China School of Mathematics and Statistics Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Hubei Wuhan430074 China Sun Yat-sen University Guangdong Zhuhai519082 China School of Mathematics and Statistics Huazhong University of Science and Technology Hubei Wuhan430074 China
In this paper, for any odd n and any integer m ≥ 1 with n > 4m, we study the fundamental solution of the higher order Schrödinger equation i∂tu(x, t) = ((−∆)m + V(x))u(x, t), t ∈ R, x ∈ Rn, where V is a rea... 详细信息
来源: 评论
Energy-Efficient Beamforming Design for Integrated Sensing and Communications Systems
arXiv
收藏 引用
arXiv 2023年
作者: Zou, Jiaqi Sun, Songlin Masouros, Christos Cui, Yuanhao Liu, Ya-Feng Ng, Derrick Wing Kwan Beijing100876 China The Department of Electrical and Electronic Engineering University College London LondonWC1E 7JE United Kingdom Beijing China The Department of Electrical and Electronic Engineering University College London WC1E 7JE United Kingdom The State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China The School of Electrical Engineering and Telecommunications University of New South Wales SydneyNSW2052 Australia
In this paper, we investigate the design of energy-efficient beamforming for an ISAC system, where the transmitted waveform is optimized for joint multi-user communication and target estimation simultaneously. We aim ... 详细信息
来源: 评论
An Inexact Augmented Lagrangian Algorithm for Training Leaky ReLU Neural Network with Group Sparsity
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Wei Liu, Xin Chen, Xiaojun Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Department of Applied Mathematics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
The leaky ReLU network with a group sparse regularization term has been widely used in the recent years. However, training such network yields a nonsmooth nonconvex optimization problem and there exists a lack of appr... 详细信息
来源: 评论
POINTWISE ESTIMATES FOR THE FUNDAMENTAL SOLUTIONS OF HIGHER ORDER SCHRÖDINGER EQUATIONS IN ODD DIMENSIONS I: LOW DIMENSIONAL CASE
arXiv
收藏 引用
arXiv 2024年
作者: Cheng, Han Huang, Shanlin Huang, Tianxiao Zheng, Quan Institute of Applied Physics and Computational Mathematics Beijing100088 China School of Mathematics and Statistics Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Hubei Wuhan430074 China Sun Yat-sen University Guangdong Zhuhai519082 China School of Mathematics and Statistics Huazhong University of Science and Technology Hubei Wuhan430074 China
In this paper, for any odd n and any integer m ≥ 1 with n tu(x, t) = ((−∆)m + V(x))u(x, t), t ∈ , x ∈ n, where V is a real-valued potential with certain decay. Let Pac(H) denote the projection onto the absolutely c... 详细信息
来源: 评论
IB-UQ: Information bottleneck based uncertainty quantification for neural function regression and neural operator learning
arXiv
收藏 引用
arXiv 2023年
作者: Guo, Ling Wu, Hao Zhou, Wenwen Wang, Yan Zhou, Tao Department of Mathematics Shanghai Normal University Shanghai China School of Mathematical Sciences Institute of Natural Sciences MOE-LSC Shanghai Jiaotong University Shanghai China School of Mathematical Sciences Tongji University Shanghai China LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks, including deep neural network (DNN) regression and neural operator learning (DeepON... 详细信息
来源: 评论