咨询与建议

限定检索结果

文献类型

  • 819 篇 期刊文献
  • 136 篇 会议
  • 5 册 图书

馆藏范围

  • 960 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 750 篇 理学
    • 567 篇 数学
    • 211 篇 物理学
    • 96 篇 统计学(可授理学、...
    • 72 篇 系统科学
    • 56 篇 生物学
    • 47 篇 化学
    • 20 篇 地球物理学
    • 16 篇 天文学
  • 474 篇 工学
    • 201 篇 计算机科学与技术...
    • 143 篇 软件工程
    • 65 篇 电子科学与技术(可...
    • 63 篇 力学(可授工学、理...
    • 61 篇 控制科学与工程
    • 58 篇 信息与通信工程
    • 56 篇 电气工程
    • 49 篇 生物工程
    • 39 篇 材料科学与工程(可...
    • 34 篇 动力工程及工程热...
    • 31 篇 光学工程
    • 29 篇 生物医学工程(可授...
    • 24 篇 核科学与技术
    • 23 篇 化学工程与技术
    • 18 篇 机械工程
    • 17 篇 仪器科学与技术
  • 61 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 13 篇 图书情报与档案管...
  • 26 篇 医学
    • 24 篇 临床医学
    • 18 篇 基础医学(可授医学...
  • 11 篇 教育学
    • 11 篇 教育学
  • 5 篇 经济学
  • 5 篇 法学
  • 5 篇 农学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 33 篇 finite element m...
  • 14 篇 numerical method...
  • 13 篇 convergence
  • 11 篇 eigenvalues and ...
  • 11 篇 gravitational wa...
  • 11 篇 finite
  • 10 篇 deep neural netw...
  • 10 篇 global convergen...
  • 9 篇 optimization
  • 9 篇 machine learning
  • 9 篇 stochastic syste...
  • 8 篇 deep learning
  • 8 篇 partial differen...
  • 8 篇 polynomials
  • 8 篇 unconstrained op...
  • 8 篇 monte carlo meth...
  • 8 篇 beamforming
  • 7 篇 method
  • 7 篇 lattice field th...
  • 7 篇 iterative method...

机构

  • 84 篇 school of mathem...
  • 76 篇 lsec institute o...
  • 64 篇 institute of com...
  • 36 篇 state key labora...
  • 23 篇 university of ch...
  • 21 篇 the state key la...
  • 19 篇 institute for pl...
  • 19 篇 university of so...
  • 19 篇 institute of app...
  • 18 篇 lsec institute o...
  • 17 篇 lsec institute o...
  • 16 篇 department of as...
  • 16 篇 scuola di ingegn...
  • 16 篇 king’s college l...
  • 16 篇 the university o...
  • 16 篇 infn sezione di ...
  • 16 篇 dipartimento di ...
  • 16 篇 università degli...
  • 16 篇 ligo laboratory ...
  • 16 篇 university of ma...

作者

  • 51 篇 liu ya-feng
  • 30 篇 zhou tao
  • 21 篇 yu haijun
  • 21 篇 zhou aihui
  • 17 篇 zhang shuo
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae
  • 16 篇 a. parisi
  • 16 篇 t. sawada
  • 16 篇 s. rowan
  • 16 篇 s. m. aronson
  • 16 篇 v. p. mitrofanov
  • 16 篇 a. j. tanasijczu...
  • 16 篇 g. moreno
  • 16 篇 g. hemming

语言

  • 903 篇 英文
  • 52 篇 其他
  • 4 篇 中文
检索条件"机构=Institute of Computational Mathematics and Scientic/Engineering Computing"
960 条 记 录,以下是171-180 订阅
排序:
STRONG ERROR ANALYSIS OF EULER METHODS FOR OVERDAMPED GENERALIZED LANGEVIN EQUATIONS WITH FRACTIONAL NOISE: NONLINEAR CASE
arXiv
收藏 引用
arXiv 2022年
作者: Dai, Xinjie Hong, Jialin Sheng, Derui Zhou, Tau Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
This paper considers the strong error analysis of the Euler and fast Euler methods for nonlinear overdamped generalized Langevin equations driven by the fractional noise. The main difficulty lies in handling the inter... 详细信息
来源: 评论
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
arXiv
收藏 引用
arXiv 2022年
作者: Guo, Ling Wu, Hao Yu, Xiaochen Zhou, Tao Department of Mathematics Shanghai Normal University Shanghai China School of Mathematical sciences Tongji University Shanghai China Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
We introduce a sampling based machine learning approach, Monte Carlo physics informed neural networks (MC-PINNs), for solving forward and inverse fractional partial differential equations (FPDEs). As a generalization ... 详细信息
来源: 评论
Lyapunov exponents and Lagrangian chaos suppression in compressible homogeneous isotropic turbulence
arXiv
收藏 引用
arXiv 2023年
作者: Yu, Haijun Fouxon, Itzhak Wang, Jianchun Li, Xiangru Yuan, Li Mao, Shipeng Mond, Michael NCMIS & LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China Department of Mechanical Engineering Ben-Gurion University of the Negev Beer-Sheva84105 Israel Department of Computational Science and Engineering Yonsei University Seoul03722 Korea Republic of Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen518055 China
We study Lyapunov exponents of tracers in compressible homogeneous isotropic turbulence at different turbulent Mach number Mt and Taylor-scale Reynolds number Reλ. We demonstrate that statistics of finite-time Lyapun... 详细信息
来源: 评论
Three Kinds of Novel Multi-Symplectic Methods for Stochastic Hamiltonian Partial Differential Equations
SSRN
收藏 引用
SSRN 2022年
作者: Hong, Jialin Hou, Baohui Li, Qiang Sun, Liying Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
Stochastic Hamiltonian partial differential equations, which possess the multi-symplectic conservation law, are an important and fairly large class of systems. The multi-symplectic methods inheriting the geometri... 详细信息
来源: 评论
ADAPTIVE DEEP DENSITY APPROXIMATION FOR FRACTIONAL FOKKER-PLANCK EQUATIONS
arXiv
收藏 引用
arXiv 2022年
作者: Zeng, Li Wan, Xiaoliang Zhou, Tao LSEC Institute of Computational Mathematics and Scientific/Engineering Computing AMSS Chinese Academy of Sciences Beijing China Department of Mathematics Center for Computation and Technology Louisiana State University Baton Rouge70803 United States
In this work, we propose adaptive deep learning approaches based on normalizing flows for solving fractional Fokker-Planck equations (FPEs). The solution of a FPE is a probability density function (PDF). Traditional m... 详细信息
来源: 评论
Three kinds of novel multi-symplectic methods for stochastic Hamiltonian partial differential equations
arXiv
收藏 引用
arXiv 2022年
作者: Hong, Jialin Hou, Baohui Li, Qiang Sun, Liying Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
Stochastic Hamiltonian partial differential equations, which possess the multi-symplectic conservation law, are an important and fairly large class of systems. The multi-symplectic methods inheriting the geometric fea... 详细信息
来源: 评论
Rapid quantum ground state preparation via dissipative dynamics
arXiv
收藏 引用
arXiv 2025年
作者: Zhan, Yongtao Ding, Zhiyan Huhn, Jakob Gray, Johnnie Preskill, John Chan, Garnet Kin-Lic Lin, Lin Institute for Quantum Information and Matter California Institute of Technology United States Division of Physics Mathematics and Astronomy California Institute of Technology United States Department of Mathematics University of California Berkeley United States Department of Physics Arnold Sommerfeld Center for Theoretical Physics Ludwig-Maximilians-Universität München Germany Division of Chemistry and Chemical Engineering California Institute of Technology United States Department of Physics California Institute of Technology United States AWS Center for Quantum Computing Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory United States
Inspired by natural cooling processes, dissipation has become a promising approach for preparing low-energy states of quantum systems. However, the potential of dissipative protocols remains unclear beyond certain com... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
Shape of my heart: Cardiac models through learned signed distance functions
arXiv
收藏 引用
arXiv 2023年
作者: Verhülsdonk, Jan Grandits, Thomas Costabal, Francisco Sahli Pinetz, Thomas Krause, Rolf Auricchio, Angelo Haase, Gundolf Pezzuto, Simone Effland, Alexander Institute for Applied Mathematics University of Bonn Germany Department of Mathematics and Scientific Computing University of Graz Austria Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Chile Center for Computational Medicine in Cardiology Università della Svizzera italiana Switzerland FernUni Schweiz Brig Switzerland Instituto Cardiocentro Ticino EOC Switzerland Department of Mathematics University of Trento Italy
The efficient construction of anatomical models is one of the major challenges of patient-specific in-silico models of the human heart. Current methods frequently rely on linear statistical models, allowing no advance... 详细信息
来源: 评论
A Deep Learning Method for computing Eigenvalues of the Fractional Schrödinger Operator
arXiv
收藏 引用
arXiv 2023年
作者: Yixiao, Guo Pingbing, Ming LSEC Institute of Computational Mathematics and Scientific/Engineering Computing AMSS Chinese Academy of Sciences No. 55 East Road Zhong-Guan-Cun Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
We present a novel deep learning method for computing eigenvalues of the fractional Schrödinger operator. Our approach combines a newly developed loss function with an innovative neural network architecture that ... 详细信息
来源: 评论