咨询与建议

限定检索结果

文献类型

  • 819 篇 期刊文献
  • 136 篇 会议
  • 5 册 图书

馆藏范围

  • 960 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 750 篇 理学
    • 567 篇 数学
    • 211 篇 物理学
    • 96 篇 统计学(可授理学、...
    • 72 篇 系统科学
    • 56 篇 生物学
    • 47 篇 化学
    • 20 篇 地球物理学
    • 16 篇 天文学
  • 474 篇 工学
    • 201 篇 计算机科学与技术...
    • 143 篇 软件工程
    • 65 篇 电子科学与技术(可...
    • 63 篇 力学(可授工学、理...
    • 61 篇 控制科学与工程
    • 58 篇 信息与通信工程
    • 56 篇 电气工程
    • 49 篇 生物工程
    • 39 篇 材料科学与工程(可...
    • 34 篇 动力工程及工程热...
    • 31 篇 光学工程
    • 29 篇 生物医学工程(可授...
    • 24 篇 核科学与技术
    • 23 篇 化学工程与技术
    • 18 篇 机械工程
    • 17 篇 仪器科学与技术
  • 61 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 13 篇 图书情报与档案管...
  • 26 篇 医学
    • 24 篇 临床医学
    • 18 篇 基础医学(可授医学...
  • 11 篇 教育学
    • 11 篇 教育学
  • 5 篇 经济学
  • 5 篇 法学
  • 5 篇 农学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 33 篇 finite element m...
  • 14 篇 numerical method...
  • 13 篇 convergence
  • 11 篇 eigenvalues and ...
  • 11 篇 gravitational wa...
  • 11 篇 finite
  • 10 篇 deep neural netw...
  • 10 篇 global convergen...
  • 9 篇 optimization
  • 9 篇 machine learning
  • 9 篇 stochastic syste...
  • 8 篇 deep learning
  • 8 篇 partial differen...
  • 8 篇 polynomials
  • 8 篇 unconstrained op...
  • 8 篇 monte carlo meth...
  • 8 篇 beamforming
  • 7 篇 method
  • 7 篇 lattice field th...
  • 7 篇 iterative method...

机构

  • 84 篇 school of mathem...
  • 76 篇 lsec institute o...
  • 64 篇 institute of com...
  • 36 篇 state key labora...
  • 23 篇 university of ch...
  • 21 篇 the state key la...
  • 19 篇 institute for pl...
  • 19 篇 university of so...
  • 19 篇 institute of app...
  • 18 篇 lsec institute o...
  • 17 篇 lsec institute o...
  • 16 篇 department of as...
  • 16 篇 scuola di ingegn...
  • 16 篇 king’s college l...
  • 16 篇 the university o...
  • 16 篇 infn sezione di ...
  • 16 篇 dipartimento di ...
  • 16 篇 università degli...
  • 16 篇 ligo laboratory ...
  • 16 篇 university of ma...

作者

  • 51 篇 liu ya-feng
  • 30 篇 zhou tao
  • 21 篇 yu haijun
  • 21 篇 zhou aihui
  • 17 篇 zhang shuo
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae
  • 16 篇 a. parisi
  • 16 篇 t. sawada
  • 16 篇 s. rowan
  • 16 篇 s. m. aronson
  • 16 篇 v. p. mitrofanov
  • 16 篇 a. j. tanasijczu...
  • 16 篇 g. moreno
  • 16 篇 g. hemming

语言

  • 903 篇 英文
  • 52 篇 其他
  • 4 篇 中文
检索条件"机构=Institute of Computational Mathematics and Scientic/Engineering Computing"
960 条 记 录,以下是411-420 订阅
排序:
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Benchmark computations for the polarization tensor characterization of small conducting objects
arXiv
收藏 引用
arXiv 2021年
作者: Amad, A.A.S. Ledger, Paul D. Betcke, T. Praetorius, D. Zienkiewicz Centre for Computational Engineering College of Engineering Swansea University Bay Campus Fabian Way SwanseaSA1 8EN United Kingdom School of Computing & Mathematics Keele University Newcastle under Lyme StaffordshireST5 5BG United Kingdom Centre for Inverse Problems University College London Gower Street LondonWC1E 6BT United Kingdom TU Wien Institute for Analysis and Scientific Computing Wiedner Hauptstr. 8-10 / E101 / 4 Wien1040 Austria
The characterisation of small low conducting inclusions in an otherwise uniform background from low-frequency electrical field measurements has important applications in medical imaging using electrical impedance tomo... 详细信息
来源: 评论
DPA-2: a large atomic model as a multi-task learner
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Duo Liu, Xinzijian Zhang, Xiangyu Zhang, Chengqian Cai, Chun Bi, Hangrui Du, Yiming Qin, Xuejian Peng, Anyang Huang, Jiameng Li, Bowen Shan, Yifan Zeng, Jinzhe Zhang, Yuzhi Liu, Siyuan Li, Yifan Chang, Junhan Wang, Xinyan Zhou, Shuo Liu, Jianchuan Luo, Xiaoshan Wang, Zhenyu Jiang, Wanrun Wu, Jing Yang, Yudi Yang, Jiyuan Yang, Manyi Gong, Fu-Qiang Zhang, Linshuang Shi, Mengchao Dai, Fu-Zhi York, Darrin M. Liu, Shi Zhu, Tong Zhong, Zhicheng Lv, Jian Cheng, Jun Jia, Weile Chen, Mohan Ke, Guolin Weinan, E. Zhang, Linfeng Wang, Han AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China CAS Key Laboratory of Magnetic Materials and Devices Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of Sciences Ningbo315201 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai200062 China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States Department of Chemistry Princeton University PrincetonNJ08540 United States College of Chemistry and Molecular Engineering Peking University Beijing100871 China Yuanpei College Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China Key Laboratory of Material Simulation Methods & Software of Ministry of Education College of Physics Jilin University Changchun130012 China International Center of Future Science Jilin University Changchun130012 China Key Laboratory for Quantum Materials of Zhejiang Province Department of Physics School of Science Westlake University Zhejiang Hangzhou310030 China Atomistic Simulations Italia
The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct la... 详细信息
来源: 评论
Energy-preserving exponential integrable numerical method for stochastic cubic wave equation with additive noise
arXiv
收藏 引用
arXiv 2019年
作者: Cui, Jianbo Hong, Jialin Ji, Lihai Sun, Liying School of Mathematics Georgia Institute of Technology AtlantaGA30332 United States Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Institute of Applied Physics and Computational Mathematics Beijing100094 China
In this paper, we present an energy-preserving exponentially integrable numerical method for stochastic wave equation with cubic nonlinearity and additive noise. We first apply the spectral Galerkin method to discreti... 详细信息
来源: 评论
Stochastic Trust-Region Methods with Trust-Region Radius Depending on Probabilistic Models
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Xiaoyu Yuan, Ya-Xiang Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Zhong Guan Cun Donglu 55 Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China
We present a stochastic trust-region model-based framework in which its radius is related to the probabilistic models. Especially, we propose a specific algorithm, termed STRME, in which the trust-region radius depend... 详细信息
来源: 评论
Sp(2N) Yang-Mills theories on the lattice: Scale setting and topology
收藏 引用
Physical Review D 2022年 第9期106卷 094503-094503页
作者: Ed Bennett Deog Ki Hong Jong-Wan Lee C.-J. David Lin Biagio Lucini Maurizio Piai Davide Vadacchino Swansea Academy of Advanced Computing Swansea University Fabian Way SA1 8EN Swansea Wales United Kingdom Department of Physics Pusan National University Busan 46241 Republic of Korea Institute for Extreme Physics Pusan National University Busan 46241 Republic of Korea Institute of Physics National Yang Ming Chiao Tung University 1001 Ta-Hsueh Road Hsinchu 30010 Taiwan Center for High Energy Physics Chung-Yuan Christian University Chung-Li 32023 Taiwan Centre for Theoretical and Computational Physics National Yang Ming Chiao Tung University 1001 Ta-Hsueh Road Hsinchu 30010 Taiwan Physics Division National Centre for Theoretical Sciences Taipei 10617 Taiwan Department of Mathematics Faculty of Science and Engineering Swansea University Fabian Way SA1 8EN Swansea Wales United Kingdom Department of Physics Faculty of Science and Engineering Swansea University Singleton Park SA2 8PP Swansea Wales United Kingdom School of Mathematics and Hamilton Mathematics Institute Trinity College Dublin 2 Ireland Centre for Mathematical Sciences University of Plymouth PL4 8AA Plymouth United Kingdom
We study Yang-Mills lattice theories with Sp(Nc) gauge group, with Nc=2N, for N=1,…,4. We show that if we divide the renormalized couplings appearing in the Wilson flow by the quadratic Casimir C2(F) of the Sp(Nc) gr... 详细信息
来源: 评论
On the mixing between flavor singlets in lattice gauge theories coupled to matter fields in multiple representations
arXiv
收藏 引用
arXiv 2024年
作者: Bennett, Ed Forzano, Niccolò Hong, Deog Ki Hsiao, Ho Lee, Jong-Wan Lin, C.-J. David Lucini, Biagio Piai, Maurizio Vadacchino, Davide Zierler, Fabian Swansea Academy of Advanced Computing Swansea University Bay Campus Fabian Way Wales SwanseaSA1 8EN United Kingdom Department of Physics Faculty of Science and Engineering Swansea University Singleton Park Wales SwanseaSA2 8PP United Kingdom Department of Physics Pusan National University Busan46241 Korea Republic of Extreme Physics Institute Pusan National University Busan46241 Korea Republic of Institute of Physics National Yang Ming Chiao Tung University 1001 Ta-Hsueh Road Hsinchu30010 Taiwan Daejeon34126 Korea Republic of Centre for Theoretical and Computational Physics National Yang Ming Chiao Tung University 1001 Ta-Hsueh Road Hsinchu30010 Taiwan Centre for High Energy Physics Chung-Yuan Christian University Chung-Li32023 Taiwan Department of Mathematics Faculty of Science and Engineering Swansea University Bay Campus Fabian Way Wales SwanseaSA1 8EN United Kingdom Centre for Mathematical Sciences University of Plymouth PlymouthPL4 8AA United Kingdom
We provide the first extensive, numerical study of the non-trivial problem of mixing between flavor-singlet composite states emerging in strongly coupled lattice field theories with matter field content consisting of ... 详细信息
来源: 评论
Analysis of the second order bdf scheme with variable steps for the molecular beam epitaxial model without slope selection
arXiv
收藏 引用
arXiv 2020年
作者: Liao, Hong-Lin Song, Xuehua Tang, Tao Zhou, Tao Department of Mathematics Nanjing University of Aeronautics and Astronautics Nanjing211106 China Department of Mathematics Nanjing University of Aeronautics and Astronautics 211101 China Department of Mathematics and International Center for Mathematics Southern University of Science and Technology ShenzhenGuangdong China Division of Science and Technology BNU-HKBU United International College ZhuhaiGuangdong China NCMIS & LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China
In this work, we are concerned with the stability and convergence analysis of the second order BDF (BDF2) scheme with variable steps for the molecular beam epitaxial model without slope selection. We first show that t... 详细信息
来源: 评论
An improved gradient method with approximately optimal stepsize based on conic model for unconstrained optimization
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Zexian Liu, Hongwei State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering computing AMSS Chinese Academy of Sciences Beijing1000190 China School of Mathematics and Statistics Xidian University Xi’an710126 China
A new type of stepsize, which was recently introduced by Liu and Liu (Optimization, 67(3), 427-440, 2018), is called approximately optimal stepsize and is quit efficient for gradient method. Interestingly, all gradien... 详细信息
来源: 评论
A PLANE WAVE DISCONTINUOUS GALERKIN METHOD FOR THE HELMHOLTZ EQUATION AND MAXWELL EQUATIONS IN ANISOTROPIC MEDIA ∗
arXiv
收藏 引用
arXiv 2019年
作者: Yuan, Long Qiya, H.U. College of Mathematics and Systems Science Shandong University of Science and Technology Qingdao266590 China 1. LSEC Institute of Computational Mathematics and Scientic/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China 2. School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
In this paper we are concerned with plane wave discontinuous Galerkin (PWDG) methods for Helmholtz equation and time-harmonic Maxwell equations in three-dimensional anisotropic media, for which the coefficients of the... 详细信息
来源: 评论