咨询与建议

限定检索结果

文献类型

  • 820 篇 期刊文献
  • 137 篇 会议
  • 5 册 图书

馆藏范围

  • 962 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 752 篇 理学
    • 569 篇 数学
    • 213 篇 物理学
    • 97 篇 统计学(可授理学、...
    • 72 篇 系统科学
    • 56 篇 生物学
    • 47 篇 化学
    • 20 篇 地球物理学
    • 17 篇 天文学
  • 478 篇 工学
    • 200 篇 计算机科学与技术...
    • 141 篇 软件工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 力学(可授工学、理...
    • 61 篇 控制科学与工程
    • 58 篇 电气工程
    • 58 篇 信息与通信工程
    • 49 篇 生物工程
    • 42 篇 材料科学与工程(可...
    • 34 篇 动力工程及工程热...
    • 31 篇 光学工程
    • 29 篇 生物医学工程(可授...
    • 25 篇 核科学与技术
    • 23 篇 化学工程与技术
    • 18 篇 机械工程
    • 17 篇 仪器科学与技术
  • 61 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 13 篇 图书情报与档案管...
  • 25 篇 医学
    • 23 篇 临床医学
    • 18 篇 基础医学(可授医学...
  • 11 篇 教育学
    • 11 篇 教育学
  • 5 篇 法学
  • 5 篇 农学
  • 4 篇 经济学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 33 篇 finite element m...
  • 14 篇 numerical method...
  • 13 篇 convergence
  • 11 篇 eigenvalues and ...
  • 11 篇 gravitational wa...
  • 11 篇 finite
  • 10 篇 optimization
  • 10 篇 global convergen...
  • 9 篇 deep neural netw...
  • 9 篇 machine learning
  • 9 篇 stochastic syste...
  • 9 篇 unconstrained op...
  • 8 篇 deep learning
  • 8 篇 partial differen...
  • 8 篇 computational mo...
  • 8 篇 polynomials
  • 8 篇 monte carlo meth...
  • 8 篇 beamforming
  • 7 篇 method
  • 7 篇 lattice field th...

机构

  • 84 篇 school of mathem...
  • 76 篇 lsec institute o...
  • 63 篇 institute of com...
  • 38 篇 state key labora...
  • 23 篇 university of ch...
  • 21 篇 the state key la...
  • 19 篇 institute for pl...
  • 19 篇 university of so...
  • 18 篇 lsec institute o...
  • 18 篇 institute of app...
  • 17 篇 lsec institute o...
  • 16 篇 department of as...
  • 16 篇 scuola di ingegn...
  • 16 篇 king’s college l...
  • 16 篇 the university o...
  • 16 篇 infn sezione di ...
  • 16 篇 dipartimento di ...
  • 16 篇 università degli...
  • 16 篇 ligo laboratory ...
  • 16 篇 university of ma...

作者

  • 51 篇 liu ya-feng
  • 30 篇 zhou tao
  • 21 篇 yu haijun
  • 21 篇 zhou aihui
  • 17 篇 zhang shuo
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae
  • 16 篇 a. parisi
  • 16 篇 t. sawada
  • 16 篇 s. rowan
  • 16 篇 s. m. aronson
  • 16 篇 v. p. mitrofanov
  • 16 篇 a. j. tanasijczu...
  • 16 篇 g. moreno
  • 16 篇 g. hemming

语言

  • 834 篇 英文
  • 122 篇 其他
  • 5 篇 中文
检索条件"机构=Institute of Computational Mathematics and Scientic/Engineering Computing"
962 条 记 录,以下是531-540 订阅
排序:
On energy dissipation theory and numerical stability for time-fractional phase field equations
arXiv
收藏 引用
arXiv 2018年
作者: Tang, Tao Yu, Haijun Zhou, Tao Department of Mathematics Southern University of Science and Technology Shenzhen China NCMIS LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
For the time-fractional phase field models, the corresponding energy dissipation law has not been settled on both the continuous level and the discrete level. In this work, we shall address this open issue. More preci... 详细信息
来源: 评论
Linear Stability of Hyperbolic Moment Models for Boltzmann Equation
收藏 引用
高等学校计算数学学报(英文版) 2017年 第2期10卷 255-277页
作者: Yana Di Yuwei Fan Ruo Li Lingchao Zheng LSEC Institute of Computational Mathematics and Scientific/Engineering Computing NCMIS AMSS Chinese Academy of Sciences Beijing 100190China School of Mathematical Sciences Peking University Beijing 100871 China HEDPS & CAPT LMAM & School of Mathematical SciencesPeking University Beijing 100871 China
Grad's moment models for Boltzmann equation were recently regularized to globally hyperbolic systems and thus the regularized models attain local wellposedness for Cauchy *** hyperbolic regularization is only rela... 详细信息
来源: 评论
Determining system Hamiltonian from eigenstate measurements without correlation functions
arXiv
收藏 引用
arXiv 2019年
作者: Hou, Shi-Yao Cao, Ningping Lu, Sirui Shen, Yi Poon, Yiu-Tung Zeng, Bei College of Physics and Electronic Engineering Center for Computational Sciences Sichuan Normal University Chengdu610068 China Center for Quantum Computing Peng Cheng Laboratory Shenzhen518055 China Shenzhen Institute for Quantum Science and Engineering Southern University of Science and Technology Shenzhen518055 China Department of Mathematics & Statistics University of Guelph GuelphONN1G 2W1 Canada Institute for Quantum Computing University of Waterloo WaterlooONN2L 3G1 Canada Department of Physics Tsinghua University Beijing100084 China Department of Statistics and Actuarial Science University of Waterloo WaterlooON Canada Department of Mathematics Iowa State University AmesIA50011 United States Department of Physics Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
Local Hamiltonians arise naturally in physical systems. Despite its seemingly 'simple' local structure, exotic features such as nonlocal correlations and topological orders exhibit in eigenstates of these syst... 详细信息
来源: 评论
A decoupling two-grid method for the time-dependent poisson-nernst-planck equations
arXiv
收藏 引用
arXiv 2018年
作者: Shen, Ruigang Shu, Shi Yang, Ying Lu, Benzhuo School of Mathematics and Computational Science Xiangtan University Xiangtan Hunan411105 China Hunan Key Laboratory for Computation and Simulation in Science and Engineering Xiangtan University Xiangtan Hunan411105 China School of Mathematics and Computational Science Guangxi Colleges Universities Key Laboratory of Data Analysis and Computation Guangxi Key Laboratory of Cryptography and information Security Guilin University of Electronic Technology Guilin Guangxi541004 China Institute of Computational Mathematics and Scientific/Engineering Computing National Center for Mathematics and Interdisciplinary Sciences Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China
We study a two-grid strategy for decoupling the time-dependent Poisson-Nernst-Planck equations describing the mass concentration of ions and the electrostatic potential. The computational system is decoupled to smalle... 详细信息
来源: 评论
Learning from learning machines: A new generation of AI technology to meet the needs of science
arXiv
收藏 引用
arXiv 2021年
作者: Pion-Tonachini, Luca Bouchard, Kristofer Martin, Hector Garcia Peisert, Sean Holtz, W. Bradley Aswani, Anil Dwivedi, Dipankar Wainwright, Haruko Pilania, Ghanshyam Nachman, Benjamin Marrone, Babetta L. Falco, Nicola Prabhat Arnold, Daniel Wolf-Yadlin, Alejandro Powers, Sarah Climer, Sharlee Jackson, Quinn Carlson, Ty Sohn, Michael Zwart, Petrus Kumar, Neeraj Justice, Amy Tomlin, Claire Jacobson, Daniel Micklem, Gos Gkoutos, Georgios V. Bickel, Peter J. Cazier, Jean-Baptiste Müller, Juliane Webb-Robertson, Bobbie-Jo Stevens, Rick Anderson, Mark Kreutz-Delgado, Ken Mahoney, Michael W. Brown, James B. Pattern Computer Inc. Friday HarborWA98250 United States Biosciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computational Research Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Helen Wils Neuroscience Institute Redwood Center for Theoretical Neuroscience Uc Berkeley BerkeleyCA94720 United States Doe Agile BioFoundry Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Joint BioEnergy Institute Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Bcam Basque Center for Applied Mathematics Bilbao48009 Spain Computer Science University of California Davis DavisCA95616 United States Cenic La MiradaCA90638 United States Health Informatics University of California Davis School of Medicine SacramentoCA95817 United States Berkeley Institute for Data Science University of California Berkeley BerkeleyCA94720 United States Industrial Engineering and Operations Research University of California Berkeley BerkeleyCA94720 United States Environmental & Earth Sciences Area Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Nuclear Engineering University of California Berkeley BerkeleyCA94720 United States Materials Science and Technology Division Los Alamos National Laboratory Los AlamosNM87545 United States Physics Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Bioscience Division Los Alamos National Laboratory Los AlamosNM87545 United States Earth and Environmental Sciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Energy Technologies Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computing and Computational Sciences Oak Ridge National Laboratory Oak RidgeTN37831 United States Industrial & Systems Engineering The University of Tennessee KnoxvilleTN37996 United States Department of Computer Science University of Missouri-Saint Louis St. LouisMO63121 United
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery. The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patte... 详细信息
来源: 评论
Corrigendum to: A convergent adaptive finite element method for elliptic Dirichlet boundary control problems
收藏 引用
IMA Journal of Numerical Analysis 2020年 第1期40卷 800-800页
作者: Gong, Wei Liu, Wenbin Tan, Zhiyu Yan, Ningning National Center for Mathematics and Interdisciplinary Sciences Chinese Academy of Sciences Beijing China The State Key Laboratory of Scientific and Engineering Computing Chinese Academy of Sciences Beijing China Institute of Computational Mathematics Chinese Academy of Sciences Beijing China Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China Kent Business School University of Kent Kent UK Department of Mathematics Hong Kong Baptist University Kowloon Tong Hong Kong SAR NCMIS Chinese Academy of Sciences Beijing China LSEC Chinese Academy of Sciences Beijing China Institute of Systems Science Chinese Academy of Sciences Beijing China
来源: 评论
Quasi-potential calculation and minimum action method for limit cycle
arXiv
收藏 引用
arXiv 2018年
作者: Lin, Ling Yu, Haijun Zhou, Xiang School of Mathematics Sun Yat-sen University Guangzhou510275 China School of Mathematical Sciences University of Chinese Academy of Sciences NCMIS and LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Beijing100190 China Department of Mathematics City University of Hong Kong Tat Chee Ave Kowloon Hong Kong
We study the noise-induced escape from a stable limit cycle of a non-gradient dynamical system driven by a small additive noise. The fact that the optimal transition path in this case is infinitely long imposes a seve... 详细信息
来源: 评论
Lattice QCD and Particle Physics
arXiv
收藏 引用
arXiv 2022年
作者: Kronfeld, Andreas S. Bhattacharya, Tanmoy Blum, Thomas Christ, Norman H. DeTar, Carleton Detmold, William Edwards, Robert Hasenfratz, Anna Lin, Huey-Wen Mukherjee, Swagato Orginos, Konstantinos Brower, Richard Cirigliano, Vincenzo Davoudi, Zohreh Jóo, Bálint Jung, Chulwoo Lehner, Christoph Meinel, Stefan Neil, Ethan T. Petreczky, Peter Richards, David G. Bazavov, Alexei Catterall, Simon Dudek, Jozef J. El-Khadra, Aida X. Engelhardt, Michael Fleming, George T. Giedt, Joel Gupta, Rajan Hansen, Maxwell T. Izubuchi, Taku Karsch, Frithjof Laiho, Jack Liu, Keh-Fei Meyer, Aaron S. Rinaldi, Enrico Savage, Martin Schaich, David Shanahan, Phiala E. Sharpe, Stephen R. Sufian, Raza Syritsyn, Sergey Van de Water, Ruth S. Wagman, Michael L. Weinberg, Evan Witzel, Oliver Aubin, Christopher Boyle, Peter Chandrasekharan, Shailesh Cloët, Ian C. Constantinou, Martha Cushman, Kimmy DeGrand, Thomas Fodor, Zoltan Foreman, Sam Gottlieb, Steven Hoying, Daniel Jang, Yong-Chull Jay, William I. Jin, Xiao-Yong Kelly, Christopher Kuti, Julius Lamm, Henry Lin, Meifeng Lin, Yin Lytle, Andrew T. Mackenzie, Paul Mandula, Jeffrey Meurice, Yannick Monahan, Christopher Morningstar, Colin Osborn, James C. Park, Sungwoo Simone, James N. Strelchenko, Alexei Tomii, Masaaki Vaquero, Alejandro Vranas, Pavlos Wang, Bigeng Wilcox, Walter Yoon, Boram Zhao, Yong Theory Division Fermi National Accelerator Laboratory BataviaIL60510 United States Group T-2 Los Alamos National Laboratory Los AlamosNM87545 United States Department of Physics University of Connecticut StorrsCT06269 United States RIKEN BNL Research Center Brookhaven National Laboratory UptonNY11973 United States Department of Physics Columbia University New YorkNY10027 United States Department of Physics and Astronomy University of Utah Salt Lake CityUT84112 United States Center for Theoretical Physics Massachusetts Institute of Technology CambridgeMA02139 United States The NSF Institute for Artificial Intelligence and Fundamental Interactions Theory Center Thomas Jefferson National Accelerator Facility Newport NewsVA23606 United States Department of Physics University of Colorado BoulderCO80309 United States Department of Physics and Astronomy Michigan State University East LansingMI48824 United States Physics Department Brookhaven National Laboratory UptonNY11973 United States Department of Physics College of William & Mary WilliamsburgVA23187 United States Department of Physics Center for Computational Science Boston University BostonMA02215 United States Institute of Nuclear Theory University of Washington SeattleWA98195 United States Department of Physics Maryland Center for Fundamental Physics University of Maryland College ParkMD20742 United States Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory Oak RidgeTN37831 United States Fakultät für Physik Universität Regensburg RegensburgD-93040 Germany Department of Physics University of Arizona TucsonAZ85721 United States Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI48824 United States Department of Physics Syracuse University SyracuseNY13244 United States Department of Physics University of Illinois Urbana-Champaign UrbanaIL61801 United States Department of Physics New Mexic
Lattice field theory provides a mathematically rigorous definition of quantum field theory, including gauge theories. The rigor provides a platform for computation of strongly-coupled gauge theories, not only quantum ... 详细信息
来源: 评论
A new estimate for a quantity involving the Chebyshev polynomials of the first kind
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Xuefeng Zhang, Chen-Song LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China LSEC NCMIS Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China
In this paper, we establish a new estimate (including lower and upper bounds) for an important quantity involved in the convergence analysis of smoothed aggregation algebraic multigrid methods. The new upper bound imp... 详细信息
来源: 评论
Numerical approximation of elliptic problems with log-normal random coefficients
arXiv
收藏 引用
arXiv 2018年
作者: Wan, Xiaoliang Yu, Haijun Department of Mathematics Center for Computation and Technology Louisiana State University Baton RougeLA70803 United States NCMIS & LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
In this work, we consider a non-standard preconditioning strategy for the numerical approximation of the classical elliptic equations with log-normal random coefficients. In [45], a Wick-type elliptic model was propos... 详细信息
来源: 评论