咨询与建议

限定检索结果

文献类型

  • 1,126 篇 期刊文献
  • 208 篇 会议
  • 10 册 图书

馆藏范围

  • 1,344 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,034 篇 理学
    • 762 篇 数学
    • 341 篇 物理学
    • 145 篇 统计学(可授理学、...
    • 109 篇 系统科学
    • 83 篇 化学
    • 75 篇 生物学
    • 54 篇 地球物理学
    • 24 篇 天文学
  • 717 篇 工学
    • 285 篇 计算机科学与技术...
    • 207 篇 软件工程
    • 109 篇 力学(可授工学、理...
    • 104 篇 控制科学与工程
    • 100 篇 电子科学与技术(可...
    • 84 篇 电气工程
    • 77 篇 材料科学与工程(可...
    • 72 篇 信息与通信工程
    • 60 篇 生物工程
    • 54 篇 化学工程与技术
    • 50 篇 动力工程及工程热...
    • 43 篇 生物医学工程(可授...
    • 39 篇 光学工程
    • 33 篇 机械工程
    • 31 篇 核科学与技术
    • 30 篇 仪器科学与技术
    • 16 篇 土木工程
  • 81 篇 管理学
    • 59 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 37 篇 医学
    • 34 篇 临床医学
    • 25 篇 基础医学(可授医学...
  • 14 篇 教育学
  • 11 篇 农学
  • 9 篇 法学
  • 6 篇 经济学
  • 2 篇 军事学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 40 篇 finite element m...
  • 18 篇 computational mo...
  • 18 篇 numerical method...
  • 17 篇 eigenvalues and ...
  • 16 篇 gravitational wa...
  • 14 篇 convergence
  • 14 篇 stochastic syste...
  • 13 篇 finite
  • 12 篇 optimization
  • 12 篇 monte carlo meth...
  • 11 篇 gravity waves
  • 11 篇 mathematical mod...
  • 10 篇 inverse problems
  • 10 篇 deep neural netw...
  • 10 篇 galerkin methods
  • 10 篇 machine learning
  • 10 篇 global convergen...
  • 10 篇 gravitational wa...
  • 9 篇 partial differen...
  • 9 篇 uncertainty anal...

机构

  • 86 篇 school of mathem...
  • 76 篇 lsec institute o...
  • 59 篇 institute of com...
  • 38 篇 state key labora...
  • 26 篇 institute of app...
  • 24 篇 university of ch...
  • 19 篇 institute for pl...
  • 19 篇 university of so...
  • 19 篇 department of ma...
  • 19 篇 the state key la...
  • 17 篇 ligo laboratory ...
  • 17 篇 nasa goddard spa...
  • 17 篇 lsec institute o...
  • 16 篇 department of as...
  • 16 篇 scuola di ingegn...
  • 16 篇 king’s college l...
  • 16 篇 the university o...
  • 16 篇 infn sezione di ...
  • 16 篇 dipartimento di ...
  • 16 篇 università degli...

作者

  • 50 篇 liu ya-feng
  • 31 篇 zhou tao
  • 21 篇 zhou aihui
  • 19 篇 yu haijun
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae
  • 16 篇 a. parisi
  • 16 篇 t. sawada
  • 16 篇 s. rowan
  • 16 篇 s. m. aronson
  • 16 篇 v. p. mitrofanov
  • 16 篇 a. j. tanasijczu...
  • 16 篇 g. moreno
  • 16 篇 g. hemming
  • 16 篇 a. z. jan

语言

  • 1,145 篇 英文
  • 191 篇 其他
  • 6 篇 中文
检索条件"机构=Institute of Computational Mathematics and Scientific/Engineering Computing"
1344 条 记 录,以下是571-580 订阅
排序:
THU676 Real-time Assessment Of The Beneficial Role Of Computer-Aided Diagnosis In The Diagnosis Of Thyroid Nodules On Ultrasound
收藏 引用
Journal of the Endocrine Society 2023年 第SUPPLEMENT_1期7卷
作者: Youngsook Kim Sungjae Shin Eunjung Lee Daham Kim Jin Young Kwak Department of Internal Medicine Institute of Endocrine Research Yonsei University College of Medicine Seoul Korea Republic of Department of Internal Medicine National Health Insurance Service Ilsan Hospital Gyeonggi-do Korea Republic of School of Mathematics and Computing (Computational Science and Engineering) Yonsei University Seoul Korea Republic of Department of Radiology Severance Hospital Research Institute of Radiological Science Seoul Korea Republic of
Disclosure: Y. Kim:None.S. Shin:None.E. Lee:None.D. Kim:None.J. Kwak:None.
来源: 评论
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jinzhe Zhang, Duo Peng, Anyang Zhang, Xiangyu He, Sensen Wang, Yan Liu, Xinzijian Bi, Hangrui Li, Yifan Cai, Chun Zhang, Chengqian Du, Yiming Zhu, Jia-Xin Mo, Pinghui Huang, Zhengtao Zeng, Qiyu Shi, Shaochen Qin, Xuejian Yu, Zhaoxi Luo, Chenxing Ding, Ye Liu, Yun-Pei Shi, Ruosong Wang, Zhenyu Bore, Sigbjørn Løland Chang, Junhan Deng, Zhe Ding, Zhaohan Han, Siyuan Jiang, Wanrun Ke, Guolin Liu, Zhaoqing Lu, Denghui Muraoka, Koki Oliaei, Hananeh Singh, Anurag Kumar Que, Haohui Xu, Weihong Xu, Zhangmancang Zhuang, Yong-Bin Dai, Jiayu Giese, Timothy J. Jia, Weile Xu, Ben York, Darrin M. Zhang, Linfeng Wang, Han School of Artificial Intelligence and Data Science Unversity of Science and Technology of China Hefei China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China Department of Computer Science University of Toronto TorontoON Canada Department of Chemistry Princeton University PrincetonNJ08540 United States University of Chinese Academy of Sciences Beijing100871 China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China College of Integrated Circuits Hunan University Changsha410082 China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center for Smart Materials and Device Integration School of Material Science and Engineering Wuhan University of Technology Wuhan430070 China College of Science National University of Defense Technology Changsha410073 China Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha410073 China ByteDance Research Beijing100098 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Department of Geosciences Princeton University PrincetonNJ08544 United States Department of Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States IKKEM Fujian Xiamen361005 China Graduate
In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations an... 详细信息
来源: 评论
An orthogonalization-free parallelizable framework for all-electron calculations in density functional theory
arXiv
收藏 引用
arXiv 2020年
作者: Bin, G.A.O. Guanghui, H.U. Kuang, Yang Xin, L.I.U. ICTEAM Institute UCLouvain Louvain-la-Neuve Belgium Department of Mathematics University of Macau Macao SAR China Zhuhai UM Science & Technology Research Institute Guangdong Province China Department of Mathematics National University of Singapore Singapore State Key Laboratory of Scientific and Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences University of Chinese Academy of Sciences China
All-electron calculations play an important role in density functional theory, in which improving computational efficiency is one of the most needed and challenging tasks. In the model formulations, both nonlinear eig... 详细信息
来源: 评论
Adding higher-order spherical harmonics in nonspinning eccentric binary black hole merger waveform models
收藏 引用
Physical Review D 2025年 第12期111卷 124023-124023页
作者: Tousif Islam Gaurav Khanna Scott E. Field Kavli Institute for Theoretical Physics University of California Santa Barbara Kohn Hall Lagoon Road Santa Barbara California 93106 USA Theoretical AstroPhysics Including Relativity and Cosmology California Institute of Technology Pasadena California USA Department of Physics and Center for Computational Research University of Rhode Island Kingston Rhode Island 02881 USA Department of Physics University of Massachusetts Dartmouth Massachusetts 02747 USA Center for Scientific Computing and Data Science Research University of Massachusetts Dartmouth Massachusetts 02747 USA Department of Mathematics University of Massachusetts Dartmouth Massachusetts 02747 USA
gwnrhme is a recently developed framework that seamlessly converts a multimodal (i.e., with several spherical harmonic modes) quasicircular waveform into a multimodal eccentric waveform if the quadrupolar eccentric wa...
来源: 评论
PitVis-2023 Challenge: Workflow Recognition in videos of Endoscopic Pituitary Surgery
arXiv
收藏 引用
arXiv 2024年
作者: Das, Adrito Khan, Danyal Z. Psychogyios, Dimitrios Zhang, Yitong Hanrahan, John G. Vasconcelos, Francisco Pang, You Chen, Zhen Wu, Jinlin Zou, Xiaoyang Zheng, Guoyan Qayyum, Abdul Mazher, Moona Razzak, Imran Li, Tianbin Ye, Jin He, Junjun Plotka, Szymon Kaleta, Joanna Yamlahi, Amine Jund, Antoine Godau, Patrick Kondo, Satoshi Kasai, Satoshi Hirasawa, Kousuke Rivoir, Dominik Pérez, Alejandra Rodriguez, Santiago Arbeláez, Pablo Stoyanov, Danail Marcus, Hani J. Bano, Sophia Wellcome EPSRC Centre for Interventional and Surgical Sciences University College London London United Kingdom Department of Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom HKISI CAS China Institute of Medical Robotics School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China National Heart and Lung Institute Faculty of Medicine Imperial College London United Kingdom Centre for Medical Image Computing University College London London United Kingdom University of New South Wales Sydney Australia Shanghai AI Lab Shanghai China Informatics Institute University of Amsterdam Amsterdam Netherlands Department of Biomedical Engineering and Physics Amsterdam University Medical Center University of Amsterdam Amsterdam Netherlands Sano Center for Computational Medicine Krakow Poland Heidelberg Division of Intelligent Medical Systems Germany NCT Heidelberg a partnership between DKFZ University Hospital Heidelberg Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Muroran Institute of Technology Hokkaido Japan Niigata University of Health and Welfare Niigata Japan Konica Minolta Inc. Osaka Japan National Center for Tumor Diseases Dresden Germany Centre for Tactile Internet TUD Dresden Germany Universidad de los Andes Bogota Colombia DKFZ UKDD TUD Germany
The field of computer vision applied to videos of minimally invasive surgery is ever-growing. Workflow recognition pertains to the automated recognition of various aspects of a surgery: including which surgical steps ... 详细信息
来源: 评论
Gradient flow based discretized kohn-sham density functional theory
arXiv
收藏 引用
arXiv 2019年
作者: Dai, Xiaoying Wang, Qiao Zhou, Aihui LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
In this paper, we propose and analyze a gradient ow based Kohn-Sham density functional theory. First, we prove that the critical point of the gradient ow based model can be a local minimizer of the Kohn-Sham total ene... 详细信息
来源: 评论
Adaptive step size strategies for orthogonality constrained line search methods
arXiv
收藏 引用
arXiv 2019年
作者: Dai, Xiaoying Zhang, Liwei Zhou, Aihui LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
In this paper, we propose an adaptive step size strategy for a class of line search methods for orthogonality constrained minimization problems, which avoids the classic backtracking procedure. We prove the convergenc... 详细信息
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Efficient sampling for polynomial chaos-based uncertainty quantification and sensitivity analysis using weighted approximate Fekete points
arXiv
收藏 引用
arXiv 2020年
作者: Burk, Kyle M. Narayan, Akil Orr, Joseph A. Department of Biomedical Engineering University of Utah Utah United States Department of Anesthesiology University of Utah Utah United States Mathematics Department University of Utah Utah United States Scientific Computing and Imaging Institute University of Utah Utah United States
Performing uncertainty quantification (UQ) and sensitivity analysis (SA) is vital when developing a patient-specific physiological model because it can quantify model output uncertainty and estimate the effect of each... 详细信息
来源: 评论
DPA-2: a large atomic model as a multi-task learner
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Duo Liu, Xinzijian Zhang, Xiangyu Zhang, Chengqian Cai, Chun Bi, Hangrui Du, Yiming Qin, Xuejian Peng, Anyang Huang, Jiameng Li, Bowen Shan, Yifan Zeng, Jinzhe Zhang, Yuzhi Liu, Siyuan Li, Yifan Chang, Junhan Wang, Xinyan Zhou, Shuo Liu, Jianchuan Luo, Xiaoshan Wang, Zhenyu Jiang, Wanrun Wu, Jing Yang, Yudi Yang, Jiyuan Yang, Manyi Gong, Fu-Qiang Zhang, Linshuang Shi, Mengchao Dai, Fu-Zhi York, Darrin M. Liu, Shi Zhu, Tong Zhong, Zhicheng Lv, Jian Cheng, Jun Jia, Weile Chen, Mohan Ke, Guolin Weinan, E. Zhang, Linfeng Wang, Han AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China CAS Key Laboratory of Magnetic Materials and Devices Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of Sciences Ningbo315201 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai200062 China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States Department of Chemistry Princeton University PrincetonNJ08540 United States College of Chemistry and Molecular Engineering Peking University Beijing100871 China Yuanpei College Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China Key Laboratory of Material Simulation Methods & Software of Ministry of Education College of Physics Jilin University Changchun130012 China International Center of Future Science Jilin University Changchun130012 China Key Laboratory for Quantum Materials of Zhejiang Province Department of Physics School of Science Westlake University Zhejiang Hangzhou310030 China Atomistic Simulations Italia
The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct la... 详细信息
来源: 评论