咨询与建议

限定检索结果

文献类型

  • 1,433 篇 期刊文献
  • 269 篇 会议
  • 11 册 图书

馆藏范围

  • 1,713 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,314 篇 理学
    • 970 篇 数学
    • 439 篇 物理学
    • 198 篇 统计学(可授理学、...
    • 154 篇 系统科学
    • 105 篇 化学
    • 93 篇 生物学
    • 62 篇 地球物理学
    • 26 篇 天文学
  • 946 篇 工学
    • 377 篇 计算机科学与技术...
    • 279 篇 软件工程
    • 157 篇 力学(可授工学、理...
    • 144 篇 控制科学与工程
    • 124 篇 电子科学与技术(可...
    • 112 篇 电气工程
    • 104 篇 材料科学与工程(可...
    • 91 篇 信息与通信工程
    • 81 篇 动力工程及工程热...
    • 72 篇 生物工程
    • 68 篇 化学工程与技术
    • 60 篇 生物医学工程(可授...
    • 49 篇 光学工程
    • 42 篇 机械工程
    • 35 篇 仪器科学与技术
    • 35 篇 核科学与技术
    • 26 篇 土木工程
  • 110 篇 管理学
    • 83 篇 管理科学与工程(可...
    • 28 篇 工商管理
    • 26 篇 图书情报与档案管...
  • 55 篇 医学
    • 47 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 15 篇 法学
  • 15 篇 教育学
  • 15 篇 农学
  • 12 篇 经济学
  • 4 篇 军事学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 47 篇 finite element m...
  • 21 篇 numerical method...
  • 19 篇 eigenvalues and ...
  • 19 篇 computational mo...
  • 17 篇 gravitational wa...
  • 16 篇 navier stokes eq...
  • 16 篇 optimization
  • 16 篇 stochastic syste...
  • 15 篇 convergence
  • 14 篇 inverse problems
  • 14 篇 mathematical mod...
  • 13 篇 finite
  • 13 篇 machine learning
  • 12 篇 partial differen...
  • 12 篇 monte carlo meth...
  • 11 篇 deep neural netw...
  • 11 篇 constrained opti...
  • 11 篇 gravity waves
  • 11 篇 global convergen...
  • 10 篇 galerkin methods

机构

  • 88 篇 school of mathem...
  • 75 篇 lsec institute o...
  • 58 篇 institute of com...
  • 43 篇 hubei key labora...
  • 41 篇 school of mathem...
  • 36 篇 state key labora...
  • 29 篇 institute of int...
  • 27 篇 university of ch...
  • 23 篇 beijing institut...
  • 22 篇 institute of app...
  • 19 篇 institute for pl...
  • 19 篇 university of so...
  • 19 篇 department of ma...
  • 19 篇 the state key la...
  • 18 篇 department of ph...
  • 17 篇 department of as...
  • 17 篇 ligo laboratory ...
  • 17 篇 nasa goddard spa...
  • 17 篇 lsec institute o...
  • 16 篇 scuola di ingegn...

作者

  • 49 篇 liu ya-feng
  • 31 篇 zhou tao
  • 24 篇 shi baochang
  • 24 篇 chai zhenhua
  • 21 篇 zhou aihui
  • 19 篇 yu haijun
  • 17 篇 a. j. tanasijczu...
  • 17 篇 liu xin
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae
  • 16 篇 a. parisi
  • 16 篇 t. sawada
  • 16 篇 s. rowan
  • 16 篇 s. m. aronson
  • 16 篇 kunisch karl

语言

  • 1,453 篇 英文
  • 250 篇 其他
  • 8 篇 中文
  • 2 篇 俄文
  • 1 篇 西班牙文
检索条件"机构=Institute of Computational Mathematics and Scientific Engineering Computing"
1713 条 记 录,以下是871-880 订阅
排序:
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Xuan Wang, Limei Helwig, Jacob Luo, Youzhi Fu, Cong Xie, Yaochen Liu, Meng Lin, Yuchao Xu, Zhao Yan, Keqiang Adams, Keir Weiler, Maurice Li, Xiner Fu, Tianfan Wang, Yucheng Strasser, Alex Yu, Haiyang Xie, YuQing Fu, Xiang Xu, Shenglong Liu, Yi Du, Yuanqi Saxton, Alexandra Ling, Hongyi Lawrence, Hannah Stärk, Hannes Gui, Shurui Edwards, Carl Gao, Nicholas Ladera, Adriana Wu, Tailin Hofgard, Elyssa F. Tehrani, Aria Mansouri Wang, Rui Daigavane, Ameya Bohde, Montgomery Kurtin, Jerry Huang, Qian Phung, Tuong Xu, Minkai Joshi, Chaitanya K. Mathis, Simon V. Azizzadenesheli, Kamyar Fang, Ada Aspuru-Guzik, Alán Bekkers, Erik Bronstein, Michael Zitnik, Marinka Anandkumar, Anima Ermon, Stefano Liò, Pietro Yu, Rose Günnemann, Stephan Leskovec, Jure Ji, Heng Sun, Jimeng Barzilay, Regina Jaakkola, Tommi Coley, Connor W. Qian, Xiaoning Qian, Xiaofeng Smidt, Tess Ji, Shuiwang Department of Computer Science & Engineering Texas A&M University College StationTX United States Department of Chemical Engineering Massachusetts Institute of Technology Cambridge United Kingdom AMLab University of Amsterdam Amsterdam Netherlands Department of Computer Science University of Illinois Urbana-Champaign UrbanaIL United States Department of Electrical & Computer Engineering Texas A&M University College StationTX United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge United Kingdom Department of Materials Science & Engineering Texas A&M University College StationTX United States Department of Physics & Astronomy Texas A&M University College StationTX United States Department of Applied Mathematics & Statistics Stony Brook University Stony BrookNY United States Department of Computer Science Stony Brook University Stony BrookNY United States Department of Computer Science Cornell University IthacaNY United States Department of Computer Science Technical University of Munich München Germany Department of Computer Science Stanford University StanfordCA United States Department of Computer Science & Engineering University of California San Diego La Jolla CA United States Department of Computer Science & Technology University of Cambridge Cambridge United Kingdom Nvidia Santa ClaraCA United States Department of Chemistry and Chemical Biology Harvard University Cambridge United Kingdom Department of Chemistry University of Toronto Toronto Canada Department of Computer Science University of Toronto Toronto Canada Department of Computer Science University of Oxford Oxford United Kingdom Department of Biomedical Informatics Harvard University BostonMA United States Department of Computing & Mathematical Sciences California Institute of Technology PasadenaCA United States Computational Science Initiative Brookhaven National Laboratory UptonNY United States
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of n... 详细信息
来源: 评论
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, Aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
VisGraphNet: A complex network interpretation of convolutional neural features
arXiv
收藏 引用
arXiv 2021年
作者: Florindo, Joao B. Lee, Young-Sup Jun, Kyungkoo Jeon, Gwanggil Albertini, Marcelo K. Institute of Mathematics Statistics and Scientific Computing University of Campinas Rua Sérgio Buarque de Holanda 651 Cidade Universitária"Zeferino Vaz" - Distr. Barão Geraldo SP CampinasCEP 13083-859 Brazil Department of Embedded Systems Engineering Incheon National University 119 Academy-ro Yeonsu-gu Incheon22012 Korea Republic of Department of Computer Science Federal University of Uberlandia Av. Joao Naves de Avila 2121 room Minas Gerais Uberlandia1B150 Brazil
Here we propose and investigate the use of visibility graphs to model the feature map of a neural network. The model, initially devised for studies on complex networks, is employed here for the classification of textu... 详细信息
来源: 评论
Nektar++: Enhancing the capability and application of high-fidelity spectral/hp element methods
收藏 引用
Computer Physics Communications 2020年 249卷
作者: Moxey, David Cantwell, Chris D. Bao, Yan Cassinelli, Andrea Castiglioni, Giacomo Chun, Sehun Juda, Emilia Kazemi, Ehsan Lackhove, Kilian Marcon, Julian Mengaldo, Gianmarco Serson, Douglas Turner, Michael Xu, Hui Peiró, Joaquim Kirby, Robert M. Sherwin, Spencer J. College of Engineering Mathematics and Physical Sciences University of Exeter United Kingdom Department of Aeronautics Imperial College London United Kingdom Department of Civil Engineering Shanghai Jiao Tong University Shanghai China Underwood International College Yonsei University Korea Republic of School of Aeronautics and Astronautics Shanghai Jiao Tong University Shanghai China Department of Energy and Power Plant Technology Technische Universität Darmstadt Germany Division of Engineering and Applied Science. California Institute of Technology United States Scientific Computing and Imaging Institute University of Utah United States
Nektar++ is an open-source framework that provides a flexible, high-performance and scalable platform for the development of solvers for partial differential equations using the high-order spectral/hp element method. ... 详细信息
来源: 评论
On a nonlocal Cahn-Hilliard model permitting sharp interfaces
arXiv
收藏 引用
arXiv 2020年
作者: Burkovska, Olena Gunzburger, Max Computer Science and Mathematics Division Oak Ridge National Laboratory One Bethel Valley Road TN37831 United States Department of Scientific Computing Florida State University 400 Dirac Science Library TallahasseFL32306-4120 United States The Oden Institute for Computer Engineering and Sciences University of Texas at Austin AustinTX78712 United States
A nonlocal Cahn–Hilliard model with a nonsmooth potential of double-well obstacle type that promotes sharp interfaces in the solution is presented. To capture long-range interactions between particles, a nonlocal Gin... 详细信息
来源: 评论
Uniform structural stability and uniqueness of poiseuille flows in a two dimensional periodic strip
arXiv
收藏 引用
arXiv 2020年
作者: Kaijian, S.H.A. Wang, Yun Chunjing, X.I.E. Department of mathematics East China University of Science and Technology Shanghai China School of Mathematical Sciences Center for dynamical systems and differential equations Soochow University Suzhou China School of mathematical Sciences Institute of Natural Sciences Ministry of Education Key Laboratory of Scientific and Engineering Computing and SHL-MAC Shanghai Jiao Tong University 800 Dongchuan Road Shanghai China
In this paper, we prove the uniform nonlinear structural stability of Poiseuille flows with arbitrarily large flux for the Navier-Stokes system in a two dimensional periodic strip when the period is not large. The key... 详细信息
来源: 评论
A CASCADIC MULTIGRID METHOD FOR EIGENVALUE PROBLEM
收藏 引用
Journal of computational mathematics 2017年 第1期35卷 74-90页
作者: Xiaole Han Hehu Xie Fei Xu IAPCM Institute of Applied Physics and Computational Mathematics Beijing 100093 China LSEC NCMIS Institute of Computational Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190 China Beijing Institute for Scientific and Engineering Computing Beijing University of Technology Beijing 100124 China
A cascadic multigrid method is proposed for eigenvalue problems based on the multilevel correction scheme. With this new scheme, an eigenvalue problem on the finest space can be solved by linear smoothing steps on a s... 详细信息
来源: 评论
On optimal finite element schemes for biharmonic equation
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Shuo LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and System Sciences Chinese Academy of Sciences Beijing100190 China
In this paper, two nonconforming finite element schemes that use piecewise cubic and piecewise quartic polynomials respectively are constructed for the planar biharmonic equation with optimal convergence rates on gene... 详细信息
来源: 评论
A First Glance to the Quality Assessment of Dental Photostimulable Phosphor Plates with Deep Learning
A First Glance to the Quality Assessment of Dental Photostim...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ariana Bermudez Saul Calderon-Ramirez Trevor Thang Pascal Tyrrell Armaghan Moemeni Shengxiang Yang Jordina Torrents-Barrena School of Computing Costa Rica Institute of Technology Pattern Recognition and Machine Learning Group Costa Rica Centre for Computational Intelligence (CCI) De Montfort University United Kingdom Faculty of Dentistry University of Toronto Canada Department of Medical Imaging University of Toronto Canada University of Nottingham United Kingdom Department of Mathematics and Computer Engineering Universitat Rovira i Virgili Spain
Photostimulable Phosphor Plates are commonly used in digital X-ray imaging for dentistry. During its usage, these plates get damaged, influencing the diagnosis performance and confidence of the dentistry professional.... 详细信息
来源: 评论
Scalability of high-performance PDE solvers
arXiv
收藏 引用
arXiv 2020年
作者: Fischer, Paul Min, Misun Rathnayake, Thilina Dutta, Som Kolev, Tzanio Dobrev, Veselin Camier, Jean-Sylvain Kronbichler, Martin Warburton, Tim Swirydowicz, Kasia Brown, Jed Mathematics and Computer Science Argonne National Laboratory LemontIL60439 Department of Computer Science University of Illinois at Urbana-Champaign UrbanaIL61801 Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign UrbanaIL61801 Center for Applied Scientific Computing Lawrence Livermore National Laboratory LivermoreCA94550 Institute for Computational Mechanics Technical University of Munich Garching b. Muenchen85748 Germany Department of Computer Science University of Colorado BoulderCO80309 National Renewable Energy Laboratory LakewoodCO80401 Department of Mathematics Virginia Tech BlacksburgVA24061 Mechanical & Aerospace Engineering Utah State University UT84322
Performance tests and analyses are critical to effective HPC software development and are central components in the design and implementation of computational algorithms for achieving faster simulations on existing an... 详细信息
来源: 评论