咨询与建议

限定检索结果

文献类型

  • 1,434 篇 期刊文献
  • 269 篇 会议
  • 11 册 图书

馆藏范围

  • 1,714 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,314 篇 理学
    • 964 篇 数学
    • 442 篇 物理学
    • 193 篇 统计学(可授理学、...
    • 154 篇 系统科学
    • 105 篇 化学
    • 92 篇 生物学
    • 63 篇 地球物理学
  • 936 篇 工学
    • 377 篇 计算机科学与技术...
    • 279 篇 软件工程
    • 157 篇 力学(可授工学、理...
    • 144 篇 控制科学与工程
    • 122 篇 电子科学与技术(可...
    • 110 篇 电气工程
    • 95 篇 材料科学与工程(可...
    • 91 篇 信息与通信工程
    • 81 篇 动力工程及工程热...
    • 72 篇 生物工程
    • 68 篇 化学工程与技术
    • 60 篇 生物医学工程(可授...
    • 50 篇 光学工程
    • 42 篇 机械工程
    • 35 篇 仪器科学与技术
    • 34 篇 核科学与技术
    • 26 篇 土木工程
    • 25 篇 航空宇航科学与技...
  • 109 篇 管理学
    • 82 篇 管理科学与工程(可...
    • 28 篇 工商管理
    • 26 篇 图书情报与档案管...
  • 56 篇 医学
    • 48 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 15 篇 法学
  • 14 篇 农学
  • 13 篇 教育学
  • 12 篇 经济学
  • 4 篇 军事学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 47 篇 finite element m...
  • 21 篇 numerical method...
  • 19 篇 eigenvalues and ...
  • 19 篇 computational mo...
  • 17 篇 gravitational wa...
  • 16 篇 navier stokes eq...
  • 16 篇 optimization
  • 16 篇 stochastic syste...
  • 15 篇 convergence
  • 14 篇 inverse problems
  • 14 篇 mathematical mod...
  • 13 篇 machine learning
  • 12 篇 partial differen...
  • 12 篇 finite
  • 12 篇 monte carlo meth...
  • 11 篇 deep neural netw...
  • 11 篇 constrained opti...
  • 11 篇 gravity waves
  • 11 篇 global convergen...
  • 10 篇 galerkin methods

机构

  • 88 篇 school of mathem...
  • 75 篇 lsec institute o...
  • 60 篇 institute of com...
  • 43 篇 hubei key labora...
  • 41 篇 school of mathem...
  • 35 篇 state key labora...
  • 29 篇 institute of int...
  • 27 篇 university of ch...
  • 24 篇 beijing institut...
  • 22 篇 institute of app...
  • 19 篇 institute for pl...
  • 19 篇 university of so...
  • 19 篇 department of ma...
  • 19 篇 the state key la...
  • 18 篇 department of ph...
  • 17 篇 department of as...
  • 17 篇 ligo laboratory ...
  • 17 篇 nasa goddard spa...
  • 17 篇 lsec institute o...
  • 16 篇 scuola di ingegn...

作者

  • 48 篇 liu ya-feng
  • 31 篇 zhou tao
  • 24 篇 shi baochang
  • 24 篇 chai zhenhua
  • 20 篇 zhou aihui
  • 19 篇 yu haijun
  • 17 篇 a. j. tanasijczu...
  • 17 篇 liu xin
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae
  • 16 篇 a. parisi
  • 16 篇 t. sawada
  • 16 篇 s. rowan
  • 16 篇 s. m. aronson
  • 16 篇 kunisch karl

语言

  • 1,454 篇 英文
  • 250 篇 其他
  • 8 篇 中文
  • 2 篇 俄文
  • 1 篇 西班牙文
检索条件"机构=Institute of Computational Mathematics and Scientific Engineering Computing"
1714 条 记 录,以下是931-940 订阅
排序:
A Family of-Stable Optimized Hybrid Block Methods for Integrating Stiff Differential Systems
收藏 引用
Mathematical Problems in engineering 2022年 第1期2022卷
作者: Rajat Singla Gurjinder Singh Higinio Ramos V. Kanwar Department of Mathematical Sciences I. K. Gujral Punjab Technical University Jalandhar Main Campus Kapurthala-144603 Punjab India Department of Mathematics Akal University Bathinda-151302 India Scientific Computing Group Universidad de Salamanca Plaza de la Merced 37008 Salamanca Spainusal.es Escuela Politécnica Superior de Zamora Campus Viriato 49022 Zamora Spain University Institute of Engineering and Technology Panjab University Chandigarh-160014 Indiapuchd.ac.in
In this article, a family of one-step hybrid block methods having two intrastep points is developed for solving first-order initial value stiff differential systems that occur frequently in science and engineering. In...
来源: 评论
Electron spin mediated distortion in metallic systems
arXiv
收藏 引用
arXiv 2019年
作者: Anand, G. Eisenbach, Markus Goodall, Russell Freeman, Colin L. Department of Metallurgy and Materials Engineering Indian Institute of Engineering Science and Technology-Shibpur Howrah WB India Department of Materials Science and Engineering University of Sheffield United Kingdom Warwick Centre for Predictive Modelling University of Warwick United Kingdom Scientific Computing Group Centre for Computational Sciences Oak Ridge National Laboratory Oak RidgeTN United States
The deviation of positions of atoms from their ideal lattice sites in crystalline solid state systems causes distortion and can lead to variation in structural [1] and functional properties [2]. Distortion in molecula... 详细信息
来源: 评论
Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review
arXiv
收藏 引用
arXiv 2020年
作者: Shoeibi, Afshin Khodatars, Marjane Jafari, Mahboobeh Ghassemi, Navid Sadeghi, Delaram Moridian, Parisa Khadem, Ali Alizadehsani, Roohallah Hussain, Sadiq Zare, Assef Sani, Zahra Alizadeh Khozeimeh, Fahime Nahavandi, Saeid Rajendra Acharya, U. Gorriz, Juan M. The Data Science and Computational Intelligence Institute University of Granada Spain The Computer Engineering Department Ferdowsi University of Mashhad Mashhad Iran Deakin University VIC3217 Australia The Faculty of Electrical Engineering K. N. Toosi University of Technology Tehran Iran System Administrator at Dibrugarh University Assam786004 India Faculty of Electrical Engineering Gonabad Branch Islamic Azad University Gonabad Iran Rajaie Cardiovascular Medical and Research Center Iran University of Medical Sciences Tehran Iran The School of Mathematics Physics and Computing University of Southern Queensland Springfield Australia Dept. of Psychiatry University of Cambridge United Kingdom
Coronavirus, or COVID-19, is a hazardous disease that has endangered the health of many people around the world by directly affecting the lungs. COVID-19 is a medium-sized, coated virus with a single-stranded RNA, and... 详细信息
来源: 评论
A lowest-order mixed finite element method for the elastic transmission eigenvalue problem
arXiv
收藏 引用
arXiv 2018年
作者: Xi, Yingxia Ji, Xia School of Science Nanjing University of Science and Technology Nanjing210094 China LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and System Sciences Chinese Academy of Sciences Beijing100190 China
The goal of this paper is to develop numerical methods computing a few smallest elastic interior transmission eigenvalues, which are of practical importance in inverse elastic scattering theory. The problem is challen... 详细信息
来源: 评论
A foundation model for atomistic materials chemistry
arXiv
收藏 引用
arXiv 2023年
作者: Batatia, Ilyes Benner, Philipp Chiang, Yuan Elena, Alin M. Kovács, Dávid P. Riebesell, Janosh Advincula, Xavier R. Asta, Mark Avaylon, Matthew Baldwin, William J. Berger, Fabian Bernstein, Noam Bhowmik, Arghya Blau, Samuel M. Cărare, Vlad Darby, James P. De, Sandip Pia, Flaviano Della Deringer, Volker L. Elijošius, Rokas El-Machachi, Zakariya Falcioni, Fabio Fako, Edvin Ferrari, Andrea C. Genreith-Schriever, Annalena George, Janine Goodall, Rhys E.A. Grey, Clare P. Grigorev, Petr Han, Shuang Handley, Will Heenen, Hendrik H. Hermansson, Kersti Holm, Christian Hofmann, Stephan Jaafar, Jad Jakob, Konstantin S. Jung, Hyunwook Kapil, Venkat Kaplan, Aaron D. Karimitari, Nima Kermode, James R. Kroupa, Namu Kullgren, Jolla Kuner, Matthew C. Kuryla, Domantas Liepuoniute, Guoda Margraf, Johannes T. Magdău, Ioan-Bogdan Michaelides, Angelos Harry Moore, J. Naik, Aakash A. Niblett, Samuel P. Norwood, Sam Walton O’Neill, Niamh Ortner, Christoph Persson, Kristin A. Reuter, Karsten Rosen, Andrew S. Schaaf, Lars L. Schran, Christoph Shi, Benjamin X. Sivonxay, Eric Stenczel, Tamás K. Svahn, Viktor Sutton, Christopher Swinburne, Thomas D. Tilly, Jules van der Oord, Cas Vargas, Santiago Varga-Umbrich, Eszter Vegge, Tejs Vondrák, Martin Wang, Yangshuai Witt, William C. Zills, Fabian Csányi, Gábor Engineering Laboratory University of Cambridge Trumpington St and JJ Thomson Ave Cambridge United Kingdom Berlin Germany Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Mathematics Department University of British Columbia 1984 Mathematics Rd VancouverBCV6T 1Z2 Canada Institute of Condensed Matter Theory and Solid State Optics Friedrich Schiller University Jena Germany Molecular Foundry Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Bayreuth Germany Fritz-Haber-Institute of the Max-Planck-Society Berlin Germany Energy Technologies Area Lawrence Berkeley National Laboratory BerkeleyCA94720 United States U. S. Naval Research Laboratory WashingtonDC20375 United States Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge United Kingdom Cavendish Laboratory University of Cambridge J. J. Thomson Ave Cambridge United Kingdom Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road CambridgeCB3 0FS United Kingdom Chemix Inc. SunnyvaleCA94085 United States Inorganic Chemistry Laboratory Department of Chemistry University of Oxford OxfordOX1 3QR United Kingdom Scientific Computing Department Science and Technology Facilities Council Daresbury Laboratory Keckwick Lane DaresburyWA4 4AD United Kingdom BASF SE Carl-Bosch-Straße 38 Ludwigshafen67056 Germany Kavli Institute for Cosmology University of Cambridge Madingley Road CambridgeCB3 0HA United Kingdom Department of Chemistry and Biochemistry University of South Carolina South Carolina29208 United States Lennard-Jones Centre University of Cambridge Trinity Ln CambridgeCB2 1TN United Kingdom Institute for Computational Physics University of Stuttgart Stuttgart70569 Germany Department of Chemistry–Ångström Uppsala University Box 538 Uppsala
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the ... 详细信息
来源: 评论
ChebNet: Efficient and Stable Constructions of Deep Neural Networks with Rectified Power Units via Chebyshev Approximation
arXiv
收藏 引用
arXiv 2019年
作者: Tang, Shanshan Li, Bo Yu, Haijun Software Development Center Industrial and Commercial Bank of China No. 16 Building of ZhongGuanCun Software Park Haidian District Beijing100193 China Huawei Technologies Co. Ltd Bai Ruida Apartment Bantian Street Longgang District Shenzhen518129 China NCMIS & LSEC Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China
In a previous study [B. Li, S. Tang and H. Yu, Commun. Comput. Phy. 27(2):379-411, 2020], it is shown that deep neural networks built with rectified power units (RePU) as activation functions can give better approxima... 详细信息
来源: 评论
Metrics Reloaded: Recommendations for image analysis validation
arXiv
收藏 引用
arXiv 2022年
作者: Maier-Hein, Lena Reinke, Annika Godau, Patrick Tizabi, Minu D. Buettner, Florian Christodoulou, Evangelia Glocker, Ben Isensee, Fabian Kleesiek, Jens Kozubek, Michal Reyes, Mauricio Riegler, Michael A. Wiesenfarth, Manuel Emre Kavur, A. Sudre, Carole H. Baumgartner, Michael Eisenmann, Matthias Heckmann-Nötzel, Doreen Rädsch, Tim Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Benis, Arriel Blaschko, Matthew B. Jorge Cardoso, M. Cheplygina, Veronika Cimini, Beth A. Collins, Gary S. Farahani, Keyvan Ferrer, Luciana Galdran, Adrian Ginneken, Bram Van Haase, Robert Hashimoto, Daniel A. Hoffman, Michael M. Huisman, Merel Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kenngott, Hannes Kofler, Florian Kopp-Schneider, Annette Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moons, Karel G.M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Petersen, Jens Rajpoot, Nasir Rieke, Nicola Saez-Rodriguez, Julio Sánchez, Clara I. Shetty, Shravya Smeden, Maarten Van Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. Calster, Ben Van Varoquaux, Gaël Jäger, Paul F. Heidelberg Division of Intelligent Medical Systems and HI Helmholtz Imaging Germany Faculty of Mathematics and Computer Science and Medical Faculty Heidelberg University Heidelberg Germany NCT Heidelberg a partnership between DKFZ University Medical Center Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Intelligent Medical Systems Germany partner site Frankfurt/Mainz a partnership between DKFZ and UCT Frankfurt-Marburg Germany Heidelberg Goethe University Frankfurt Germany Department of Medicine Goethe University Frankfurt Germany Department of Informatics Frankfurt Cancer Insititute Germany Department of Computing Imperial College London London United Kingdom Heidelberg Division of Medical Image Computing and HI Applied Computer Vision Lab Germany Institute for AI in Medicine University Medicine Essen Essen Germany Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic ARTORG Center for Biomedical Engineering Research University of Bern Bern Switzerland Department of Radiation Oncology University Hospital Bern University of Bern Bern Switzerland Simula Metropolitan Center for Digital Engineering Oslo Norway UiT The Arctic University of Norway Romsø Norway Heidelberg Division of Biostatistics Germany Heidelberg Division of Intelligent Medical Systems Division of Medical Image Computing HI Applied Computer Vision Lab Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London London United Kingdom Heidelberg Division of Medical Image Computing Germany Instituto de Cálculo CONICET – Universidad de Buenos Aires Buenos Aires Argentina Centre for Medical Image Computing University College London London United Kingdom McGill University Montréal
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. Particularly in automatic biomedical image analysis, chosen performance metrics often do not ref... 详细信息
来源: 评论
One-Bit precoding and constellation range design for massive MIMO with QAM Signaling
arXiv
收藏 引用
arXiv 2018年
作者: Sohrabi, Foad Liu, Ya-Feng Yu, Wei Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto TorontoONM5S3G4 Canada State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific Engineering Computing Academy of Mathematics Systems Science Chinese Academy of Sciences Beijing100190 China
The use of low-resolution digital-to-analog converters (DACs) for transmit precoding provides crucial energy efficiency advantage for massive multiple-input multiple-output (MIMO) implementation. This paper formulates... 详细信息
来源: 评论
High-performance dune modules for solving large-scale, strongly anisotropic elliptic problems with applications to aerospace composites
arXiv
收藏 引用
arXiv 2019年
作者: Butler, R. Dodwell, T. Sandhu, A. Scheichl, R. Seelinger, L. Reinarz, Anne Department of Mechanical Engineering University of Bath United Kingdom College of Engineering Mathematics and Physical Sciences University of Exeter United Kingdom Alan Turing Institute LondonNW1 2DB United Kingdom Institute of Informatics Technical University of Munich Germany Institute for Scientific Computing University of Heidelberg Germany Department of Mathematical Sciences University of Bath United Kingdom
The key innovation in this paper is an open-source, high-performance iterative solver for high contrast, strongly anisotropic elliptic partial differential equations implemented within dune-pdelab. The iterative solve... 详细信息
来源: 评论
Data-driven polynomial chaos expansions: A weighted least-square approximation
arXiv
收藏 引用
arXiv 2018年
作者: Guo, Ling Liu, Yongle Zhou, Tao Department of Mathematics Shanghai Normal University Shanghai China Department of Mathematics Southern University of Science and Technology Shenzhen China LSEC Institute of Computational Mathematics and Scientific Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
In this work, we combine the idea of data-driven polynomial chaos expansions with the weighted least-square approach to solve uncertainty quantification (UQ) problems. The idea of data-driven polynomial chaos is to us... 详细信息
来源: 评论