In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for u...
详细信息
The increasing data pool in finance sectors forces machine learning(ML)to step into new *** data has significant financial implications and is *** users data from several organizations for various banking services may...
详细信息
The increasing data pool in finance sectors forces machine learning(ML)to step into new *** data has significant financial implications and is *** users data from several organizations for various banking services may result in various intrusions and privacy *** a result,this study employs federated learning(FL)using a flower paradigm to preserve each organization’s privacy while collaborating to build a robust shared global ***,diverse data distributions in the collaborative training process might result in inadequate model learning and a lack of *** address this issue,the present paper proposes the imple-mentation of Federated Averaging(FedAvg)and Federated Proximal(FedProx)methods in the flower framework,which take advantage of the data locality while training and guaranteeing global *** improves the privacy of the local *** analysis used the credit card and Canadian institute for Cybersecurity Intrusion Detection Evaluation(CICIDS)***,recall,and accuracy as performance indicators to show the efficacy of the proposed strategy using FedAvg and *** experimental findings suggest that the proposed approach helps to safely use banking data from diverse sources to enhance customer banking services by obtaining accuracy of 99.55%and 83.72%for FedAvg and 99.57%,and 84.63%for FedProx.
Background: The IoT (Internet of Things) assigns to the capacity of Device-to-Machine (D2M) connections, which is a vital component in the development of the digital economy. IoT integration with a human being enables...
详细信息
Time series forecasting is a vital component of data science, giving essential insights that help decision-makers to predict future trends across a number of sectors. This paper focuses on projecting complicated stock...
详细信息
Task scheduling for virtual machines (VMs) has shown to be essential for the effective development of cloud computing at the lowest cost and fastest turnaround time. A number of research gaps about job schedule optimi...
详细信息
With tremendous evolution in the internet world, the internet has become a household thing. Internet users use search engines or personal assistants to request information from the internet. Search results are greatly...
详细信息
To address the privacy concerns that arise from centralizing model training on a large number of IoT devices, a revolutionary new distributed learning framework called federated learning has been developed. This setup...
详细信息
Post Quantum Cryptography has received an increasing amount of active research. This has been made prominent by the ever-growing field of quantum computing which poses a formidable threat to the modern cybersecurity l...
详细信息
Cardiovascular disease remains a major issue for mortality and morbidity, making accurate classification crucial. This paper introduces a novel heart disease classification model utilizing Electrocardiogram (ECG) sign...
详细信息
The vast volume of redundant and irrelevant network traffic data poses significant hurdles for intrusion detection. Effective feature selection is crucial for eliminating irrelevant information. Presently, most filter...
详细信息
暂无评论