This paper addresses the underexplored landscape of chaotic functions in steganography, existing literature when examined under PRISMA-ScR framework it was realized that most of the studies predominantly focuses on ut...
详细信息
Task scheduling, which is important in cloud computing, is one of the most challenging issues in this area. Hence, an efficient and reliable task scheduling approach is needed to produce more efficient resource employ...
详细信息
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data ***,the maj...
详细信息
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data ***,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud *** approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing *** approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of *** this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing *** consider four cost-types for application deployment:Computation,communication,energy consumption,and *** proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the *** extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art *** results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost.
The Telecare Medical Information System (TMIS) faces challenges in securely exchanging sensitive health information between TMIS nodes. A Mutual Authenticated Key Agreement (MAKA) scheme is used to eliminate security ...
详细信息
The proliferation of cooking videos on the internet these days necessitates the conversion of these lengthy video contents into concise text recipes. Many online platforms now have a large number of cooking videos, in...
详细信息
The proliferation of cooking videos on the internet these days necessitates the conversion of these lengthy video contents into concise text recipes. Many online platforms now have a large number of cooking videos, in which, there is a challenge for viewers to extract comprehensive recipes from lengthy visual content. Effective summary is necessary in order to translate the abundance of culinary knowledge found in videos into text recipes that are easy to read and follow. This will make the cooking process easier for individuals who are searching for precise step by step cooking instructions. Such a system satisfies the needs of a broad spectrum of learners while also improving accessibility and user simplicity. As there is a growing need for easy-to-follow recipes made from cooking videos, researchers are looking on the process of automated summarization using advanced techniques. One such approach is presented in our work, which combines simple image-based models, audio processing, and GPT-based models to create a system that makes it easier to turn long culinary videos into in-depth recipe texts. A systematic workflow is adopted in order to achieve the objective. Initially, Focus is given for frame summary generation which employs a combination of two convolutional neural networks and a GPT-based model. A pre-trained CNN model called Inception-V3 is fine-tuned with food image dataset for dish recognition and another custom-made CNN is built with ingredient images for ingredient recognition. Then a GPT based model is used to combine the results produced by the two CNN models which will give us the frame summary in the desired format. Subsequently, Audio summary generation is tackled by performing Speech-to-text functionality in python. A GPT-based model is then used to generate a summary of the resulting textual representation of audio in our desired format. Finally, to refine the summaries obtained from visual and auditory content, Another GPT-based model is used
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classific...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classification (BTSC) has gained more attention among researcher communities. BTSC is the process of finding brain tumor tissues and classifying the tissues based on the tumor types. Manual tumor segmentation from is prone to error and a time-consuming task. A precise and fast BTSC model is developed in this manuscript based on a transfer learning-based Convolutional Neural Networks (CNN) model. The utilization of a variant of CNN is because of its superiority in distinct tasks. In the initial phase, the Magnetic Resonance Imaging (MRI) brain images are acquired from the Brain Tumor Image Segmentation Challenge (BRATS) 2019, 2020 and 2021 databases. Then the image augmentation is performed on the gathered images by using zoom-in, rotation, zoom-out, flipping, scaling, and shifting methods that effectively reduce overfitting issues in the classification model. The augmented images are segmented using the layers of the Visual-Geometry-Group (VGG-19) model. Then feature extraction using An Attribute Aware Attention (AWA) methodology is carried out on the segmented images following the segmentation block in the VGG-19 model. The crucial features are then selected using the attribute category reciprocal attention phase. These features are inputted to the Model Agnostic Concept Extractor (MACE) to generate the relevance score between the features for assisting in the final classification process. The obtained relevance scores from the MACE are provided to the max-pooling layer of the VGG-19 model. Then, the final classified output is obtained from the modified VGG-19 architecture. The implemented Relevance score with the AWA-based VGG-19 model is used to classify the tumor as the whole tumor, enhanced tumor, and tumor core. In the classification section, the proposed
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech recognition, and software engineering. Various deep learning techniques have been successfully employed to facilitate software engineering tasks, including code generation, software refactoring, and fault localization. Many studies have also been presented in top conferences and journals, demonstrating the applications of deep learning techniques in resolving various software engineering tasks. However,although several surveys have provided overall pictures of the application of deep learning techniques in software engineering,they focus more on learning techniques, that is, what kind of deep learning techniques are employed and how deep models are trained or fine-tuned for software engineering tasks. We still lack surveys explaining the advances of subareas in software engineering driven by deep learning techniques, as well as challenges and opportunities in each subarea. To this end, in this study, we present the first task-oriented survey on deep learning-based software engineering. It covers twelve major software engineering subareas significantly impacted by deep learning techniques. Such subareas spread out through the whole lifecycle of software development and maintenance, including requirements engineering, software development, testing, maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to revolutionize the whole discipline of software engineering, providing one survey covering as many subareas as possible in software engineering can help future research push forward the frontier of deep learning-based software engineering more systematically. For each of the selected subareas,we highlight the major advances achieved by applying deep learning techniques with pointers to the available datasets i
In the realm of smart healthcare, vast amounts of valuable patient data are generated worldwide. However, healthcare providers face challenges in data sharing due to privacy concerns. Federated learning (FL) offers a ...
详细信息
Web-services have become most common IT enablers today. Cyber attacks such as the distributed denial of service (DDoS) attacks pose availability concerns which may result into service outages and consequently financia...
详细信息
Emotion recognition is crucial in human-computer interaction and psychological research, utilizing modalities such as facial expressions, voice intonations, and EEG signals. This research investigates AI-driven techni...
详细信息
暂无评论