A multi-secret image sharing (MSIS) scheme facilitates the secure distribution of multiple images among a group of participants. Several MSIS schemes have been proposed with a (n, n) structure that encodes secret...
详细信息
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
Data collection using mobile sink(s) has proven to reduce energy consumption and enhance the network lifetime of wireless sensor networks. Generally speaking, a mobile sink (MS) traverses the network region, sojournin...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
Evaluation system of small arms firing has an important effect in the context of military domain. A partially automated evaluation system has been conducted and performed at the ground level. Automation of such system...
详细信息
Evaluation system of small arms firing has an important effect in the context of military domain. A partially automated evaluation system has been conducted and performed at the ground level. Automation of such system with the inclusion of artificial intelligence is a much required process. This papers puts focus on designing and developing an AI-based small arms firing evaluation systems in the context of military environment. Initially image processing techniques are used to calculate the target firing score. Additionally, firing errors during the shooting have also been detected using a machine learning algorithm. However, consistency in firing requires an abundance of practice and updated analysis of the previous results. Accuracy and precision are the basic requirements of a good shooter. To test the shooting skill of combatants, firing practices are held by the military personnel at frequent intervals that include 'grouping' and 'shoot to hit' scores. Shortage of skilled personnel and lack of personal interest leads to an inefficient evaluation of the firing standard of a firer. This paper introduces a system that will automatically be able to fetch the target data and evaluate the standard based on the fuzzy *** it will be able to predict the shooter performance based on linear regression ***, it compares with recognized patterns to analyze the individual expertise and suggest improvements based on previous values. The paper is developed on a Small Arms Firing Skill Evaluation System, which makes the whole process of firing and target evaluation faster with better accuracy. The experiment has been conducted on real-time scenarios considering the military field and shows a promising result to evaluate the system automatically.
In an Internet of Things (IoT) assisted Wireless Sensor Network (WSN), the location of the Base Station (BS) remains important. BS serves as the central hub for data collection, aggregation and communication within th...
详细信息
Accidents caused by drivers who exhibit unusual behavior are putting road safety at ever-greater risk. When one or more vehicle nodes behave in this way, it can put other nodes in danger and result in potentially cata...
详细信息
Disastrous situations pose a formidable challenge, testing our resilience against nature's fury and the race against time to prevent the loss of human life. It is noted that in such situations that Microblogging p...
详细信息
暂无评论