In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for u...
详细信息
This study examines the use of experimental designs, specifically full and fractional factorial designs, for predicting Alzheimer’s disease with fewer variables. The full factorial design systematically investigates ...
详细信息
Medical Image Analysis (MIA) is integral to healthcare, demanding advanced computational techniques for precise diagnostics and treatment planning. The demand for accurate and interpretable models is imperative in the...
详细信息
Medical Image Analysis (MIA) is integral to healthcare, demanding advanced computational techniques for precise diagnostics and treatment planning. The demand for accurate and interpretable models is imperative in the ever-evolving healthcare landscape. This paper explores the potential of Self-Supervised Learning (SSL), transfer learning and domain adaptation methods in MIA. The study comprehensively reviews SSL-based computational techniques in the context of medical imaging, highlighting their merits and limitations. In an empirical investigation, this study examines the lack of interpretable and explainable component selection in existing SSL approaches for MIA. Unlike prior studies that randomly select SSL components based on their performance on natural images, this paper focuses on identifying components based on the quality of learned representations through various clustering evaluation metrics. Various SSL techniques and backbone combinations were rigorously assessed on diverse medical image datasets. The results of this experiment provided insights into the performance and behavior of SSL methods, paving the way for an explainable and interpretable component selection mechanism for artificial intelligence models in medical imaging. The empirical study reveals the superior performance of BYOL (Bootstrap Your Own Latent) with resnet as the backbone, as indicated by various clustering evaluation metrics such as Silhouette Coefficient (0.6), Davies-Bouldin Index (0.67), and Calinski-Harabasz Index (36.9). The study also emphasizes the benefits of transferring weights from a model trained on a similar dataset instead of a dataset from a different domain. Results indicate that the proposed mechanism expedited convergence, achieving 98.66% training accuracy and 92.48% testing accuracy in 23 epochs, requiring almost half the number of epochs for similar results with ImageNet weights. This research contributes to advancing the understanding of SSL in MIA, providin
Internet of Vehicles (IoV) integrates with various heterogeneous nodes, such as connected vehicles, roadside units, etc., which establishes a distributed network. Vehicles are managed nodes providing all the services ...
详细信息
The paper addresses the critical problem of application workflow offloading in a fog environment. Resource constrained mobile and Internet of Things devices may not possess specialized hardware to run complex workflow...
详细信息
Predicting the metastatic direction of primary breast cancer (BC), thus assisting physicians in precise treatment, strict follow-up, and effectively improving the prognosis. The clinical data of 293,946 patients with ...
详细信息
If adversaries were to obtain quantum computers in the future, their massive computing power would likely break existing security schemes. Since security is a continuous process, more substantial security schemes must...
详细信息
Skin cancer is one of the most prevalent forms of human cancer. It is recognized mainly visually, beginning with clinical screening and continuing with the dermoscopic examination, histological assessment, and specime...
详细信息
The essence of music is inherently multi-modal – with audio and lyrics going hand in hand. However, there is very less research done to study the intricacies of the multi-modal nature of music, and its relation with ...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
暂无评论