咨询与建议

限定检索结果

文献类型

  • 585 篇 会议
  • 442 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 1,036 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 574 篇 工学
    • 378 篇 计算机科学与技术...
    • 322 篇 软件工程
    • 139 篇 信息与通信工程
    • 74 篇 光学工程
    • 73 篇 控制科学与工程
    • 69 篇 电气工程
    • 69 篇 生物医学工程(可授...
    • 64 篇 生物工程
    • 63 篇 电子科学与技术(可...
    • 39 篇 仪器科学与技术
    • 35 篇 化学工程与技术
    • 34 篇 机械工程
    • 26 篇 网络空间安全
    • 25 篇 交通运输工程
    • 24 篇 动力工程及工程热...
    • 24 篇 土木工程
    • 23 篇 建筑学
  • 331 篇 理学
    • 144 篇 数学
    • 96 篇 物理学
    • 84 篇 生物学
    • 59 篇 统计学(可授理学、...
    • 45 篇 化学
    • 34 篇 系统科学
  • 160 篇 管理学
    • 101 篇 管理科学与工程(可...
    • 63 篇 工商管理
    • 62 篇 图书情报与档案管...
  • 83 篇 医学
    • 69 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
    • 36 篇 公共卫生与预防医...
  • 23 篇 农学
  • 22 篇 法学
  • 21 篇 经济学
  • 5 篇 教育学
  • 3 篇 军事学
  • 2 篇 文学

主题

  • 70 篇 accuracy
  • 47 篇 deep learning
  • 44 篇 real-time system...
  • 42 篇 feature extracti...
  • 37 篇 internet of thin...
  • 32 篇 computational mo...
  • 29 篇 artificial intel...
  • 29 篇 convolutional ne...
  • 27 篇 training
  • 25 篇 predictive model...
  • 25 篇 machine learning
  • 20 篇 scalability
  • 19 篇 support vector m...
  • 19 篇 security
  • 18 篇 decision making
  • 18 篇 cloud computing
  • 17 篇 prediction algor...
  • 17 篇 technological in...
  • 17 篇 data models
  • 16 篇 data mining

机构

  • 27 篇 department of co...
  • 20 篇 department of co...
  • 18 篇 shandong provinc...
  • 18 篇 department of co...
  • 14 篇 department of bi...
  • 12 篇 department of co...
  • 12 篇 key laboratory o...
  • 11 篇 department of ap...
  • 10 篇 lebedev physical...
  • 9 篇 university of ch...
  • 9 篇 department of co...
  • 9 篇 guangdong key la...
  • 8 篇 ifac sesto fiore...
  • 8 篇 department of ap...
  • 8 篇 university of fl...
  • 8 篇 infn sezione di ...
  • 8 篇 infn laboratori ...
  • 8 篇 department of co...
  • 8 篇 department of el...
  • 8 篇 department of el...

作者

  • 40 篇 günnemann stepha...
  • 13 篇 geisler simon
  • 10 篇 bruno a.
  • 10 篇 karelin a.v.
  • 10 篇 cafagna f.
  • 10 篇 marcelli l.
  • 10 篇 leonov a.
  • 10 篇 vacchi a.
  • 10 篇 pearce m.
  • 10 篇 mayorov a.g.
  • 10 篇 castellini g.
  • 10 篇 seifedine kadry
  • 10 篇 bongi m.
  • 10 篇 malakhov v.
  • 10 篇 campana d.
  • 10 篇 spillantini p.
  • 10 篇 casolino m.
  • 10 篇 mikhailov v.v.
  • 10 篇 yurkin y.t.
  • 9 篇 bogomolov e.a.

语言

  • 910 篇 英文
  • 119 篇 其他
  • 6 篇 中文
  • 1 篇 朝鲜文
检索条件"机构=Institute of Computer Science Data and Technical Networks"
1036 条 记 录,以下是801-810 订阅
排序:
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, Aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
How to Best Predict the Daily Number of New Infections of Covid-19
arXiv
收藏 引用
arXiv 2020年
作者: Skiera, Bernd Jürgensmeier, Lukas Stowe, Kevin Gurevych, Iryna Board of EFL Data Science Institute Goethe University Frankfurt Theodor-W.-Adorno-Platz 4 Frankfurt60629 Germany Deakin University Australia Graduate School of Economics Finance and Management Goethe University Frankfurt Frankfurt60629 Germany Ubiquitous Processing Lab Computer Science Department Technical University of Darmstadt Hochschulstrasse 10 Darmstadt64289 Germany
Knowledge about the daily number of new infections of Covid-19 is important because it is the basis for political decisions resulting in lockdowns and urgent health care measures. We use Germany as an example to illus...
来源: 评论
Ambient heat and human sleep
arXiv
收藏 引用
arXiv 2020年
作者: Minor, Kelton Bjerre-Nielsen, Andreas Jónasdóttir, Sigrídur Svala Lehmann, Sune Obradovich, Nick Copenhagen Center for Social Data Science University of Copenhagen Denmark Department of the Built Environment University of Aalborg Denmark Global Policy Laboratory University of California Berkeley United States Department of Economics University of Copenhagen Denmark Department of Applied Mathematics and Computer Science Technical University of Denmark Denmark Center for Humans and Machines Max Planck Institute for Human Development Germany
Ambient temperatures are rising globally, with the greatest increases recorded at night. Concurrently, the prevalence of insufficient sleep is increasing in many populations, with substantial costs to human health and... 详细信息
来源: 评论
TOAN: Target-Oriented Alignment Network for fine-grained image categorization with few labeled samples
arXiv
收藏 引用
arXiv 2020年
作者: Huang, Huaxi Zhang, Junjie Yu, Litao Zhang, Jian Wu, Qiang Xu, Chang The Faculty of Engineering and Information Technology University of Technology Sydney SydneyNSW2007 Australia The Key Laboratory of Specialty Fiber Optics and Optical Access Networks Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication Shanghai Institute of Advanced Communication and Data Science Shanghai University Shanghai200444 China The School of Computer Science University of Sydney SydneyNSW2006 Australia
In this paper, we study the fine-grained categorization problem under the few-shot setting, i.e., each fine-grained class only contains a few labeled examples, termed Fine-Grained Few-Shot classification (FGFS). The c... 详细信息
来源: 评论
The effectiveness of backward contact tracing in networks
arXiv
收藏 引用
arXiv 2020年
作者: Kojaku, Sadamori Hébert-Dufresne, Laurent Mones, Enys Lehmann, Sune Ahn, Yong-Yeol Center for Complex Networks and Systems Research Luddy School of Informatics Computing and Engineering Indiana University BloomingtonIN47408 United States Vermont Complex Systems Center University of Vermont BurlingtonVT05405 United States Department of Computer Science University of Vermont BurlingtonVT05405 United States DTU Compute Technical University of Denmark Kgs. Lyngby 2800 Denmark Center for Social Data Science University of Copenhagen Copenhagen K1353 Denmark Indiana University Network Science Institute Indiana University BloomingtonIN47408 United States
Discovering and isolating infected individuals is a cornerstone of epidemic control1-7. Because many infectious diseases spread through close contacts, contact tracing is a key tool for case discovery and control8-15.... 详细信息
来源: 评论
Crystalline phase discriminating neutron tomography using advanced reconstruction methods
arXiv
收藏 引用
arXiv 2021年
作者: Ametova, Evelina Burca, Genoveva Chilingaryan, Suren Fardell, Gemma Jørgensen, Jakob S. Papoutsellis, Evangelos Pasca, Edoardo Warr, Ryan Turner, Martin Lionheart, William R.B. Withers, Philip J. Henry Royce Institute Department of Materials The University of Manchester M13 9PL United Kingdom Laboratory for Application of Synchrotron Radiation Karlsruhe Institute of Technology Germany ISIS Pulsed Neutron and Muon Source STFC UKRI Rutherford Appleton Laboratory United Kingdom Department of Mathematics The University of Manchester M13 9PL United Kingdom Institute for Data Processing and Electronics Karlsruhe Institute of Technology Germany Scientific Computing Department STFC UKRI Rutherford Appleton Laboratory United Kingdom Department of Applied Mathematics and Computer Science Technical University of Denmark Denmark Research IT Services The University of Manchester M13 9PL United Kingdom
Time-of-flight neutron imaging offers complementary attenuation contrast to X-ray computed tomography (CT), coupled with the ability to extract additional information from the variation in attenuation as a function of... 详细信息
来源: 评论
Opportunistic Scheduling Revisited Using Restless Bandits: Indexability and Index Policy
Opportunistic Scheduling Revisited Using Restless Bandits: I...
收藏 引用
作者: Wang, Kehao Yu, Jihong Chen, Lin Zhou, Pan Ge, Xiaohu Win, Moe Z. Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks Wuhan University of Technology Wuhan430070 China School of Information and Electronics Beijing Institute of Technology Beijing100081 China School of Data Computer Science Sun Yat-sen University Guangzhou510275 China School of Electrical and Information Communications Huazhong University of Science and Technology Wuhan430074 China Laboratory for Information and Decision Systems Massachusetts Institute of Technology CambridgeMA02139 United States
We revisit the opportunistic scheduling problem in which a server opportunistically serves multiple classes of users under time-varying multi-state Markovian channels. The aim of the server is to find an optimal polic... 详细信息
来源: 评论
Cryptanalysis of Internet of Things (IoT) Wireless Technology
Cryptanalysis of Internet of Things (IoT) Wireless Technolog...
收藏 引用
International Conference on Radio Electronics & Info Communications (UkrMiCo)
作者: Lela Mirtskhulava Larysa Globa Nugzar Meshveliani Nana Gulua Department of Computer Science Iv. Javakhishvili Tbilisi State University Tbilisi Georgia Department Information-telecommunication Networks Institute of Telecommunication Systems National Technical University of Ukraine Kiev Ukraine Department of Computer Science Faculty of Mathematics and Computer Science Sokhumi State University Tbilisi Georgia
In the given paper, we discuss the lattice-based open source public-key NTRU cryptosystem that can be used in IoT (Internet of Things). IoT spans users' personal sensitive information and many crucial aspects of p... 详细信息
来源: 评论
Generative neural network based spectrum sharing using linear sum assignment problems
arXiv
收藏 引用
arXiv 2019年
作者: Zaky, Ahmed B. Huang, Joshua Zhexue Wu, Kaishun ElHalawany, Basem M. Big data Institute School of Computer Science Shenzhen University China Benha University Egypt Shenzhen University China PCL Research Center of Networks and Communications Peng Cheng Laboratory China
Spectrum management and resource allocation (RA) problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks. The traditional approaches for solving s... 详细信息
来源: 评论
Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients
arXiv
收藏 引用
arXiv 2021年
作者: Khozeimeh, Fahime Sharifrazi, Danial Izadi, Navid Hoseini Joloudari, Javad Hassannataj Shoeibi, Afshin Alizadehsani, Roohallah Gorriz, Juan M. Hussain, Sadiq Sani, Zahra Alizadeh Moosaei, Hossein Khosravi, Abbas Nahavandi, Saeid Islam, Sheikh Mohammed Shariful Deakin University Geelong Australia Department of Computer Engineering School of Technical and Engineering Shiraz Branch Islamic Azad University Shiraz Iran Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan84156-83111 Iran Department of Computer Engineering Faculty of Engineering University of Birjand Birjand Iran Computer Engineering Department Ferdowsi University of Mashhad Mashhad Iran Faculty of Electrical and Computer Engineering Biomedical Data Acquisition Lab K. N. Toosi University of Technology Tehran Iran Department of Signal Theory Networking and Communications Universidad de Granada Department of Psychiatry University of Cambridge Cambridge United Kingdom Dibrugarh University Assam 786004 India Omid Hospital Iran University of Medical Sciences Tehran Iran Department of Mathematics Faculty of Science University of Bojnord Iran Institute for Physical Activity and Nutrition School of Exercise and Nutrition Sciences Deakin University GeelongVIC3220 Australia Cardiovascular Division The George Institute for Global Health Newtown Australia Sydney Medical School University of Sydney Camperdown Australia
COVID-19 has caused many deaths worldwide. The automation of the diagnosis of this virus is highly desired. Convolutional neural networks (CNNs) have shown outstanding classification performance on image datasets. To ... 详细信息
来源: 评论