Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data r...
详细信息
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data redaction. However, the development of redactable blockchain is now obstructed by three limitations, which are data privacy breaches, high communication overhead, and low searching efficiency, respectively. In this paper, we propose PriChain, the first efficient privacy-preserving fine-grained redactable blockchain in decentralized settings. PriChain provides data owners with rights to control who can read and redact on-chain data while maintaining downward compatibility, ensuring the one who can redact will be able to read. Specifically, inspired by the concept of multi-authority attribute-based encryption, we utilize the isomorphism of the access control tree, realizing fine-grained redaction mechanism, downward compatibility, and collusion resistance. With the newly designed structure, PriChain can realize O(n) communication and storage overhead compared to prior O(n2) schemes. Furthermore, we integrate multiple access trees into a tree-based dictionary, optimizing searching efficiency. Theoretical analysis proves that PriChain is secure against the chosen-plaintext attack and has competitive complexity. The experimental evaluations show that PriChain realizes 10× efficiency improvement of searching and 100× lower communication and storage overhead on average compared with existing schemes.
The virtual private cloud service currently lacks a real-time end-to-end consistency validation mechanism, which prevents tenants from receiving immediate feedback on their requests. Existing solutions consume excessi...
详细信息
The virtual private cloud service currently lacks a real-time end-to-end consistency validation mechanism, which prevents tenants from receiving immediate feedback on their requests. Existing solutions consume excessive communication and computational resources in such large-scale cloud environments, and suffer from poor timeliness. To address these issues, we propose a lightweight consistency validation mechanism that includes real-time incremental validation and periodic full-scale validation. The former leverages message layer aggregation to enable tenants to swiftly determine the success of their requests on hosts with minimal communication overhead. The latter utilizes lightweight validation checksums to compare the expected and actual states of hosts locally, while efficiently managing the checksums of various host entries using inverted indexing. This approach enables us to efficiently validate the complete local configurations within the limited memory of hosts. In summary, our proposed mechanism achieves closed-loop implementation for new requests and ensures their long-term effectiveness.
Denoising(DN) and demosaicing(DM) are the first crucial stages in the image signal processing pipeline. Recently, researches pay more attention to solve DN and DM in a joint manner, which is an extremely undetermined ...
详细信息
Denoising(DN) and demosaicing(DM) are the first crucial stages in the image signal processing pipeline. Recently, researches pay more attention to solve DN and DM in a joint manner, which is an extremely undetermined inverse problem. Existing deep learning methods learn the desired prior on synthetic dataset, which limits the generalization of learned network to the real world data. Moreover, existing methods mainly focus on the raw data property of high green information sampling rate for DM, but occasionally exploit the high intensity and signalto-noise(SNR) of green channel. In this work, a deep guided attention network(DGAN) is presented for real image joint DN and DM(JDD), which considers both high SNR and high sampling rate of green information for DN and DM, respectively. To ease the training and fully exploit the data property of green channel, we first train DN and DM sub-networks sequentially and then learn them jointly, which can alleviate the error accumulation. Besides, in order to support the real image JDD, we collect paired raw clean RGB and noisy mosaic images to conduct a realistic dataset. The experimental results on real JDD dataset show the presented approach performs better than the state-of-the-art methods, in terms of both quantitative metrics and qualitative visualization.
Therapeutic peptides contribute significantly to human health and have the potential for personalized medicine. The prediction for the therapeutic peptides is beneficial and emerging for the discovery of drugs. Althou...
详细信息
Therapeutic peptides contribute significantly to human health and have the potential for personalized medicine. The prediction for the therapeutic peptides is beneficial and emerging for the discovery of drugs. Although several computational approaches have emerged to discern the functions of therapeutic peptides, predicting multi-functional therapeutic peptide types is challenging. In this research, a novel approach termed TPpred-SC has been introduced. This method leverages a pretrained protein language model alongside multi-label supervised contrastive learning to predict multi-functional therapeutic *** framework incorporates sequential semantic information directly from large-scale protein sequences in TAPE. Then, TPpred-SC exploits multi-label supervised contrastive learning to enhance the representation of peptide sequences for imbalanced multi-label therapeutic peptide prediction. The experimental findings demonstrate that TPpred-SC achieves superior performance compared to existing related methods. To serve our work more efficiently, the web server of TPpred-SC can be accessed at http://***/TPpred-SC.
Cross-platform binary code similarity detection aims at detecting whether two or more pieces of binary code are similar or not. Existing approaches that combine control flow graphs(CFGs)-based function representation ...
详细信息
Cross-platform binary code similarity detection aims at detecting whether two or more pieces of binary code are similar or not. Existing approaches that combine control flow graphs(CFGs)-based function representation and graph convolutional network(GCN)-based similarity analysis are the best-performing ones. Due to a large amount of convolutional computation and the loss of structural information, the use of convolution networks will inevitably bring problems such as high overhead and sometimes inaccuracy. To address these issues, we propose a fast cross-platform binary code similarity detection framework that takes advantage of natural language processing(NLP)and inductive graph neural network(GNN) for basic blocks embedding and function representation respectively by simulating extracting structural features and temporal features. GNN's node-centric and small batch is a suitable training way for large CFGs, it can greatly reduce computational overhead. Various NLP basic block embedding models and GNNs are evaluated. Experimental results show that the scheme with long short term memory(LSTM)for basic blocks embedding and inductive learning-based Graph SAGE(GAE) for function representation outperforms the state-of-the-art works. In our framework, we can take only 45% overhead. Improve efficiency significantly with a small performance trade-off.
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but th...
详细信息
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but they cannot fully learn the features. Therefore, we propose circ-CNNED, a convolutional neural network(CNN)-based encoding and decoding framework. We first adopt two encoding methods to obtain two original matrices. We preprocess them using CNN before fusion. To capture the feature dependencies, we utilize temporal convolutional network(TCN) and CNN to construct encoding and decoding blocks, respectively. Then we introduce global expectation pooling to learn latent information and enhance the robustness of circ-CNNED. We perform circ-CNNED across 37 datasets to evaluate its effect. The comparison and ablation experiments demonstrate that our method is superior. In addition, motif enrichment analysis on four datasets helps us to explore the reason for performance improvement of circ-CNNED.
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relativ...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relatively time-consuming but also cannot provide representative complete shape features based on partial *** this paper,a novel feature alignment fast point cloud completion network(FACNet)is proposed to directly and efficiently generate the detailed shapes of *** aligns high-dimensional feature distributions of both partial and complete point clouds to maintain global information about the complete *** its decoding process,the local features from the partial point cloud are incorporated along with the maintained global information to ensure complete and time-saving generation of the complete point *** results show that FACNet outperforms the state-of-theart on PCN,Completion3D,and MVP datasets,and achieves competitive performance on ShapeNet-55 and KITTI ***,FACNet and a simplified version,FACNet-slight,achieve a significant speedup of 3–10 times over other state-of-the-art methods.
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
Polysemy is a common phenomenon in linguistics. Quantum-inspired complex word embeddings based on Semantic Hilbert Space play an important role in natural language processing, which may accurately define a genuine pro...
详细信息
Polysemy is a common phenomenon in linguistics. Quantum-inspired complex word embeddings based on Semantic Hilbert Space play an important role in natural language processing, which may accurately define a genuine probability distribution over the word space. The existing quantum-inspired works manipulate on the real-valued vectors to compose the complex-valued word embeddings, which lack direct complex-valued pre-trained word representations. Motivated by quantum-inspired complex word embeddings, we propose a complex-valued pre-trained word embedding based on density matrices, called Word2State. Unlike the existing static word embeddings, our proposed model can provide non-linear semantic composition in the form of amplitude and phase, which also defines an authentic probabilistic distribution. We evaluate this model on twelve datasets from the word similarity task and six datasets from the relevant downstream tasks. The experimental results on different tasks demonstrate that our proposed pre-trained word embedding can capture richer semantic information and exhibit greater flexibility in expressing uncertainty.
CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computationa...
详细信息
CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computational model to predict the associations between circRNAs and diseases. And there is existing more and more evidence indicates that the combination of multi-biomolecular information can improve the prediction accuracy. We propose a novel computational model for CDA prediction named MBCDA, we collect the multi-biomolecular information including circRNA, disease, miRNA and lncRNA based on 6 databases, and construct three heterogeneous network among them, then the multi-heads graph attention networks are applied to these three networks to extract the features of circRNAs and diseases from different views, the obtained features are put into variational graph auto-encoder(VGAE) network to learn the latent distributions of the nodes, a fully connected neural network is adopted to further process the output of VGAE and uses sigmoid function to obtain the predicted probabilities of circRNA-disease *** a result, MBCDA achieved the values of AUC and AUPR under 5-fold cross-validation of 0.893 and 0.887. MBCDA was applied to the analysis of the top-25 predicted associations between circRNAs and diseases, these experimental results show that our proposed MBCDA is a powerful computational model for CDA prediction.
暂无评论