咨询与建议

限定检索结果

文献类型

  • 132 篇 期刊文献
  • 99 篇 会议
  • 4 册 图书

馆藏范围

  • 235 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 139 篇 工学
    • 63 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 37 篇 控制科学与工程
    • 35 篇 生物医学工程(可授...
    • 25 篇 生物工程
    • 24 篇 光学工程
    • 24 篇 仪器科学与技术
    • 18 篇 机械工程
    • 15 篇 信息与通信工程
    • 11 篇 电气工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 土木工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 建筑学
    • 6 篇 航空宇航科学与技...
  • 99 篇 理学
    • 44 篇 数学
    • 30 篇 物理学
    • 27 篇 生物学
    • 9 篇 化学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 7 篇 地球物理学
  • 30 篇 管理学
    • 16 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 28 篇 医学
    • 26 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 教育学
  • 3 篇 农学
  • 2 篇 军事学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 11 篇 robot sensing sy...
  • 9 篇 robots
  • 6 篇 deep learning
  • 5 篇 neutrons
  • 5 篇 semantics
  • 5 篇 surgery
  • 4 篇 learning systems
  • 4 篇 force
  • 4 篇 cameras
  • 4 篇 optimization
  • 4 篇 equations
  • 4 篇 robot kinematics
  • 4 篇 mathematical mod...
  • 4 篇 sensors
  • 4 篇 training
  • 3 篇 reinforcement le...
  • 3 篇 deep neural netw...
  • 3 篇 maps
  • 3 篇 motion planning
  • 3 篇 automation

机构

  • 12 篇 infn sezione di ...
  • 12 篇 north-west unive...
  • 12 篇 institut univers...
  • 12 篇 université de st...
  • 12 篇 ncsr demokritos ...
  • 12 篇 infn sezione di ...
  • 12 篇 infn sezione di ...
  • 12 篇 comenius univers...
  • 12 篇 infn sezione di ...
  • 12 篇 universitat poli...
  • 12 篇 tbilisi state un...
  • 12 篇 uclouvain centre...
  • 12 篇 czech technical ...
  • 12 篇 università di ge...
  • 12 篇 cadi ayyad unive...
  • 11 篇 tno technical sc...
  • 11 篇 university moham...
  • 11 篇 lpc caen normand...
  • 11 篇 university of am...
  • 11 篇 università la sa...

作者

  • 12 篇 chen a.
  • 12 篇 benoit d.m.
  • 12 篇 ferrara g.
  • 12 篇 ardid m.
  • 12 篇 calvo d.
  • 12 篇 eddymaoui a.
  • 12 篇 kulikovskiy v.
  • 12 篇 labalme m.
  • 12 篇 gal t.
  • 12 篇 bozza c.
  • 12 篇 díaz a.f.
  • 12 篇 boumaaza j.
  • 12 篇 benhassi m.
  • 12 篇 bouasla a.b.
  • 12 篇 boettcher m.
  • 12 篇 enzenhöfer a.
  • 12 篇 celli s.
  • 12 篇 carretero v.
  • 12 篇 ardid s.
  • 12 篇 alhebsi a.r.

语言

  • 214 篇 英文
  • 19 篇 其他
  • 2 篇 中文
检索条件"机构=Institute of Computer Science Mathematics and Robotics"
235 条 记 录,以下是101-110 订阅
排序:
***: A Julia Package for Spin Dynamics
arXiv
收藏 引用
arXiv 2025年
作者: Dahlbom, David Zhang, Hao Miles, Cole Quinn, Sam Niraula, Alin Thipe, Bhushan Wilson, Matthew Matin, Sakib Mankad, Het Hahn, Steven Pajerowski, Daniel Johnston, Steve Wang, Zhentao Lane, Harry Li, Ying Wai Bai, Xiaojian Mourigal, Martin Batista, Cristian D. Barros, Kipton Neutron Scattering Division Oak Ridge National Laboratory United States Department of Physics and Astronomy University of Tennessee United States Theoretical Division CNLS Los Alamos National Laboratory United States Kodiak Robotics School of Physics Georgia Institute of Technology United States Department of Physics and Astronomy Univeriy of California Los Angeles United States Department of Physics and Astronomy Louisiana State University United States X-Computational Physics Division Los Alamos National Laboratory United States Computer Science and Mathematics Division Oak Ridge National Laboratory United States Institute for Advanced Materials and Manufacturing Unversity of Tennessee United States Center for Correlated Matter School of Physics Zhejiang University China Department of Physics and Astronomy University of Manchester United Kingdom The University of Manchester at Harwell University of Manchester United Kingdom School of Physics and Astronomy University of St Andrews United Kingdom Computer Computational and Statistical Sciences Division Los Alamos National Laboratory United States
Sunny is a Julia package designed to serve the needs of the quantum magnetism community. It supports the specification of a very broad class of spin models and a diverse suite of numerical solvers. These include power... 详细信息
来源: 评论
Using spatial-temporal ensembles of convolutional neural networks for lumen segmentation in ureteroscopy
arXiv
收藏 引用
arXiv 2021年
作者: Lazo, Jorge F. Marzullo, Aldo Moccia, Sara Catellani, Michele Rosa, Benoit de Mathelin, Michel de Momi, Elena DEIB Politecnico di Milano Milan Italy ICube UMR 7357 CNRS-Université de Strasbourg Strasbourg France Department of Mathematics and Computer Science University of Calabria Rende Italy The BioRobotics Institute Scuola Superiore Sant'Anna Pisa Italy Department of Excellence in Robotics and AI Scuola Superiore Sant'Anna Pisa Italy Milan Italy
Purpose: Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma (UTUC). During ureteroscopy, the automatic segmentation of the hollow l... 详细信息
来源: 评论
On the self-testing (m,n)-code checker design
收藏 引用
IOP Conference Series: Materials science and Engineering 2021年 第1期1019卷
作者: N Butorina Yu Burkatovskaya E Pakhomova Institute of Applied Mathematics and Computer Science National Research Tomsk State University Tomsk Russia School of Computer Science and Robotics National Research Tomsk Polytechnic University Tomsk Russia
We propose an approach to a self-testing (m, n)-code checker design, based on subdividing the set of all code words into special subsets called segments. The checker circuit is constructed by using one- and two-output...
来源: 评论
A transfer-learning approach for lesion detection in endoscopic images from the urinary tract
arXiv
收藏 引用
arXiv 2021年
作者: Lazo, Jorge F. Moccia, Sara Marzullo, Aldo Catellani, Michele de Cobelli, Ottavio Rosa, Benoit de Mathelin, Michel de Momi, Elena Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy ICube UMR 7357 CNRS-Université de Strasbourg Strasbourg France The BioRobotics Institute Scuola Superiore Sant'Anna Pisa Italy Department of Excellence in Robotics and AI Scuola Superiore Sant'Anna Pisa Italy Department of Mathematics and Computer Science University of Calabria RendeCS Italy Milan Italy
Ureteroscopy and cystoscopy are the gold standard methods to identify and treat tumors along the urinary tract. It has been reported that during a normal procedure a rate of 10-20 % of the lesions could be missed. In ... 详细信息
来源: 评论
Robust facial landmark detection by multi-order multi-constraint deep networks
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Jun Lai, Zhihui Li, Jing Zhou, Jie Gao, Can College of Computer Science and Software Engineering Shen zhen University Shenzhen518060 China School of Mathematics and Statistics Hanshan Normal University Chaozhou521041 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China School of Computer Science Wuhan University Wuhan430072 China
Recently, heatmap regression has been widely explored in facial landmark detection and obtained remarkable performance. However, most of the existing heatmap regression-based facial landmark detection methods neglect ... 详细信息
来源: 评论
Regularization with multilevel non-stationary tight framelets for image restoration
arXiv
收藏 引用
arXiv 2021年
作者: Li, Yan-Ran Chan, Raymond H.F. Shen, Lixin Zhuang, Xiaosheng College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Media Security Shenzhen University Shenzhen518060 China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Department of Mathematics City University of Hong Kong Tat Chee Avenue Kowloon Tong Hong Kong Department of Mathematics Syracuse University SyracuseNY13244 United States
Variational regularization models are one of the popular and efficient approaches for image restoration. The regularization functional in the model carries prior knowledge about the image to be restored. The prior kno... 详细信息
来源: 评论
Robust facial landmark detection by cross-order cross-semantic deep network
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Jun Lai, Zhihui Shen, Linlin Zhou, Jie Gao, Can Xiao, Gang Hou, Xianxu College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China School of Mathematics and Statistics Hanshan Normal University Chaozhou521041 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China
Recently, convolutional neural networks (CNNs)-based facial landmark detection methods have achieved great success. However, most of existing CNN-based facial landmark detection methods have not attempted to activate ... 详细信息
来源: 评论
An automatic approach for the classification of ancient clay statuettes based on heads features recognition
An automatic approach for the classification of ancient clay...
收藏 引用
2019 Eurographics Workshop on Graphics and Cultural Heritage, GCH 2019
作者: Scalas, A. Vassallo, V. Mortara, M. Spagnuolo, M. Hermon, S. Institute of Applied Mathematics and Information Technologies 'Enrico Magenes National Research Council Italy Department of Computer Science Bioengineering Robotics and Systems Engineering University of Genova Italy Science and Technology for Archaeology Research Center Cyprus Institute Cyprus Department of Archaeology and Ancient History Lund University Sweden
In recent years, quantitative approaches based on mathematical theories and ICT tools, known under the terms of digital, computational, and virtual archaeology, are more and more involved in the traditional archaeolog... 详细信息
来源: 评论
Correction to: SleepBoost: a multi‑level tree‑based ensemble model for automatic sleep stage classification
收藏 引用
Medical & biological engineering & computing 2024年 第9期62卷 2785页
作者: Akib Zaman Shiu Kumar Swakkhar Shatabda Iman Dehzangi Alok Sharma Computer Science and Artificial Intelligence Laboratory (CSAIL) Electrical Engineering and Computer Science Department Massachusetts Institute of Technology Cambridge MA USA. School of Electrical & Electronics Engineering Fiji National University Suva Fiji. shiu.kumar@fnu.ac.fj. Centre for Artificial Intelligence and Robotics (CAIR) United International University Dhaka Bangladesh. Department of Computer Science Rutgers University Camden NJ USA. Center for Computational and Integrative Biology Rutgers University Camden USA. Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama 230‑0045 Japan. Institute for Integrated and Intelligent Systems Griffith University Nathan Brisbane QLD Australia.
来源: 评论
Active interactions between animals and technology: biohybrid approaches for animal behaviour research
收藏 引用
Animal Behaviour 2025年 224卷
作者: Papadopoulou, M. Ball, M. Bartashevich, P. Burns, A.L.J. Chiara, V. Clark, M.A. Costelloe, B.R. Fele, M. French, F. Hauert, S. Heinrich, M.K. Herbert-Read, J.E. Hoitt, J. Ioannou, C.C. Landgraf, T. Matchette, S.R. Polverino, G. Sankey, D.W.E. Scott, D.M. Sridhar, V.H. Strömbom, D. Trianni, V. Vo-Doan, T.T. King, A.J. Department of Biosciences Faculty of Science and Engineering Swansea University Swansea United Kingdom Department of Biology Lafayette College Easton PA United States Institute for Theoretical Biology Department of Biology Humboldt-Universität zu Berlin Berlin Germany Cluster of Excellence ‘Science of Intelligence’ Berlin Germany Department Fish Biology Fisheries and Aquaculture Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany Faculty of Life Sciences Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität zu Berlin Berlin Germany Museum and Institute of Zoology Polish Academy of Science Warszawa Poland School of Biological Sciences University of Bristol Bristol United Kingdom School of Natural Sciences Macquarie University Sydney Australia Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany Department of Biology University of Konstanz Konstanz Germany Department of Collective Behavior Max Planck Institute of Animal Behavior Konstanz Germany School of Computing and Digital Media London Metropolitan University London United Kingdom Bristol Robotics Laboratory University of Bristol Bristol United Kingdom IRIDIA Université Libre de Bruxelles Brussels Belgium Department of Zoology University of Cambridge Cambridge United Kingdom Department of Mathematics and Computer Science Freie Universität Berlin Berlin Germany Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy School of Natural and Environmental Science Newcastle University Newcastle upon Tyne United Kingdom Centre for Ecology and Conservation Faculty of Environment Science and Economy University of Exeter Penryn Campus Cornwall United Kingdom School of Animal Rural and Environmental Sciences Nottingham Trent University Nottingham United Kingdom Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany Ins
Biohybrid approaches (where living and engineered components are combined) provide new opportunities for advancing animal behaviour research and its applications. This review article and accompanying special issue exp... 详细信息
来源: 评论