咨询与建议

限定检索结果

文献类型

  • 55 篇 期刊文献
  • 24 篇 会议

馆藏范围

  • 79 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 43 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 23 篇 生物工程
    • 17 篇 光学工程
    • 16 篇 信息与通信工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 安全科学与工程
    • 4 篇 机械工程
    • 4 篇 化学工程与技术
    • 4 篇 交通运输工程
    • 3 篇 建筑学
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 2 篇 农业工程
  • 39 篇 理学
    • 23 篇 生物学
    • 11 篇 物理学
    • 9 篇 数学
    • 4 篇 化学
    • 4 篇 统计学(可授理学、...
  • 19 篇 管理学
    • 12 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 公共卫生与预防医...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 农学
  • 1 篇 教育学

主题

  • 6 篇 object detection
  • 4 篇 deep learning
  • 4 篇 computer vision
  • 3 篇 benchmarking
  • 3 篇 convolutional ne...
  • 2 篇 deep neural netw...
  • 2 篇 big data
  • 2 篇 image segmentati...
  • 2 篇 numerical simula...
  • 2 篇 predictive model...
  • 2 篇 machine learning
  • 2 篇 mathematics
  • 2 篇 embeddings
  • 2 篇 biomedical imagi...
  • 2 篇 linear transform...
  • 2 篇 object recogniti...
  • 2 篇 training
  • 1 篇 image enhancemen...
  • 1 篇 conferences
  • 1 篇 mammography

机构

  • 8 篇 christian dopple...
  • 7 篇 institute for co...
  • 7 篇 christian dopple...
  • 5 篇 christian dopple...
  • 5 篇 institute of com...
  • 4 篇 department of co...
  • 4 篇 computer vision ...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 lausanne
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 amazon
  • 3 篇 centre for visio...
  • 2 篇 university of sc...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...

作者

  • 11 篇 bischof horst
  • 10 篇 possegger horst
  • 6 篇 lin wei
  • 6 篇 reid ian
  • 6 篇 schiele bernt
  • 5 篇 fruhwirth-reisin...
  • 5 篇 mirza muhammad j...
  • 5 篇 horst possegger
  • 5 篇 horst bischof
  • 5 篇 wei lin
  • 5 篇 mateusz kozinski
  • 4 篇 pulabaigari visw...
  • 4 篇 rezatofighi hami...
  • 4 篇 kozinski mateusz
  • 4 篇 carneiro gustavo
  • 4 篇 mukherjee snehas...
  • 4 篇 m. jehanzeb mirz...
  • 3 篇 fischer jonas
  • 3 篇 shabbeer basha s...
  • 3 篇 roth stefan

语言

  • 74 篇 英文
  • 4 篇 其他
  • 1 篇 德文
检索条件"机构=Institute of Computer Vision and Machine Learning"
79 条 记 录,以下是11-20 订阅
排序:
An Enhancement of Object Detection Using YOLO V8 and Mobile Net in Challenging Conditions
收藏 引用
SN computer Science 2025年 第4期6卷 1-20页
作者: Pasupuleti, Shailaja Ramalakshmi, K. Gunasekaran, Hemalatha Arokiaraj, Rex Macedo Debnath, Saswati Jebaseeli, T. Jemima Department of Computer Science and Engineering Alliance University Karnataka Anekal Bangalore India AU-Centre of Excellence Department of Computer Vision Alliance University Karnataka Anekal Bangalore India College of Computing and Information Sciences University of Technology and Applied Sciences Ibri Oman Department of Information Technology College of Computing and Information Sciences University of Technology and Applied Sciences Ibri Oman Department of Computer Science and Engineering Alliance University Karnataka Bangalore India Division of Artificial Intelligence and Machine Learning Karunya Institute of Technology and Sciences Coimbatore India
Autonomous drones and deep learning neural networks are becoming popular tools to revolutionize aircraft operations by partially automating visual inspection processes in aircraft maintenance. The research aims to pro... 详细信息
来源: 评论
A Comprehensive Analysis of Mamba for 3D Volumetric Medical Image Segmentation
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Chaohan Xie, Yutong Chen, Qi Zhou, Yuyin Wu, Qi Australian Institute for Machine Learning The University of Adelaide Adelaide Australia Computer Vision Department MBZUAI Abu Dhabi United Arab Emirates Computer Science and Engineering Department UC Santa Cruz Santa Cruz United States
Mamba, with its selective State Space Models (SSMs), offers a more computationally efficient solution than Transformers for long-range dependency modeling. However, there is still a debate about its effectiveness in h...
来源: 评论
UPAR Challenge 2024: Pedestrian Attribute Recognition and Attribute-Based Person Retrieval - Dataset, Design, and Results
UPAR Challenge 2024: Pedestrian Attribute Recognition and At...
收藏 引用
IEEE Winter Applications and computer vision Workshops (WACVW)
作者: Mickael Cormier Andreas Specker Julio C. S. Jacques Lennart Moritz Jürgen Metzler Thomas B. Moeslund Kamal Nasrollahi Sergio Escalera Jürgen Beyerer Fraunhofer IOSB Germany Karlsruhe Institute of Technology Germany Fraunhofer Center for Machine Learning Germany University of Barcelona Spain Computer Vision Center Spain Aalborg University Denmark Milestone Systems Denmark
Attribute-based person retrieval enables individuals to be searched and retrieved using their soft biometric features, for instance, gender, accessories, and clothing colors. The process has numerous practical use cas...
来源: 评论
LaFTer: Label-Free Tuning of Zero-shot Classifier using Language and Unlabeled Image Collections
arXiv
收藏 引用
arXiv 2023年
作者: Mirza, M. Jehanzeb Karlinsky, Leonid Lin, Wei Kozinski, Mateusz Possegger, Horst Feris, Rogerio Bischof, Horst Institute of Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Austria MIT-IBM Watson AI Lab United States
Recently, large-scale pre-trained vision and Language (VL) models have set a new state-of-the-art (SOTA) in zero-shot visual classification enabling open-vocabulary recognition of potentially unlimited set of categori... 详细信息
来源: 评论
SAILOR: Scaling Anchors via Insights into Latent Object Representation
arXiv
收藏 引用
arXiv 2022年
作者: Malić, Dušan Fruhwirth-Reisinger, Christian Possegger, Horst Bischof, Horst Institute of Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Austria
LiDAR 3D object detection models are inevitably biased towards their training dataset. The detector clearly exhibits this bias when employed on a target dataset, particularly towards object sizes. However, object size... 详细信息
来源: 评论
Video Test-Time Adaptation for Action Recognition
Video Test-Time Adaptation for Action Recognition
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Wei Lin Muhammad Jehanzeb Mirza Mateusz Kozinski Horst Possegger Hilde Kuehne Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Semantic 3D Computer Vision Christian Doppler Laboratory for Embedded Machine Learning Goethe University Frankfurt Germany MIT-IBM Watson AI Lab
Although action recognition systems can achieve top performance when evaluated on in-distribution test points, they are vulnerable to unanticipated distribution shifts in test data. However, test-time adaptation of vi...
来源: 评论
DRT: Detection Refinement for Multiple Object Tracking  32
DRT: Detection Refinement for Multiple Object Tracking
收藏 引用
32nd British machine vision Conference, BMVC 2021
作者: Wang, Bisheng Fruhwirth-Reisinger, Christian Possegger, Horst Bischof, Horst Cao, Guo School of Computer Science and Engineering Nanjing University of Science and Technology China Christian Doppler Laboratory for Embedded Machine Learning Austria Institute of Computer Graphics and Vision Graz University of Technology Austria
Deep learning methods have led to remarkable progress in multiple object tracking (MOT). However, when tracking in crowded scenes, existing methods still suffer from both inaccurate and missing detections. This paper ... 详细信息
来源: 评论
MATE: Masked Autoencoders are Online 3D Test-Time Learners
MATE: Masked Autoencoders are Online 3D Test-Time Learners
收藏 引用
International Conference on computer vision (ICCV)
作者: M. Jehanzeb Mirza Inkyu Shin Wei Lin Andreas Schriebl Kunyang Sun Jaesung Choe Mateusz Kozinski Horst Possegger In So Kweon Kuk-Jin Yoon Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Korea Advanced Institute of Science and Technology (KAIST) South Korea Southeast University China
Our MATE is the first Test-Time-Training (TTT) method designed for 3D data, which makes deep networks trained for point cloud classification robust to distribution shifts occurring in test data. Like existing TTT meth...
来源: 评论
Exploring the potential of collaborative UAV 3D mapping in Kenyan savanna for wildlife research
arXiv
收藏 引用
arXiv 2024年
作者: Shukla, Vandita Morelli, Luca Trybala, Pawel Remondino, Fabio Gan, Wentian Yu, Yifei Wang, Xin Trento Italy Computer Vision and Machine Learning Systems Group Institute for Geoinformatics University of Muenster Germany Dept. of Civil Environmental and Mechanical Engineering University of Trento Italy School of Geodesy and Geomatics Wuhan University China
UAV-based biodiversity conservation applications have exhibited many data acquisition advantages for researchers. UAV platforms with embedded data processing hardware can support conservation challenges through 3D hab... 详细信息
来源: 评论
Sit Back and Relax: learning to Drive Incrementally in All Weather Conditions
Sit Back and Relax: Learning to Drive Incrementally in All W...
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Stefan Leitner M. Jehanzeb Mirza Wei Lin Jakub Micorek Marc Masana Mateusz Kozinski Horst Possegger Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Christian Doppler Laboratory for Semantic 3D Computer Vision Silicon Austria Labs TU Graz - SAL Dependable Embedded Systems Lab
In autonomous driving scenarios, current object detection models show strong performance when tested in clear weather. However, their performance deteriorates significantly when tested in degrading weather conditions....
来源: 评论