咨询与建议

限定检索结果

文献类型

  • 55 篇 期刊文献
  • 24 篇 会议

馆藏范围

  • 79 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 43 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 23 篇 生物工程
    • 17 篇 光学工程
    • 16 篇 信息与通信工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 安全科学与工程
    • 4 篇 机械工程
    • 4 篇 化学工程与技术
    • 4 篇 交通运输工程
    • 3 篇 建筑学
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 2 篇 农业工程
  • 39 篇 理学
    • 23 篇 生物学
    • 11 篇 物理学
    • 9 篇 数学
    • 4 篇 化学
    • 4 篇 统计学(可授理学、...
  • 19 篇 管理学
    • 12 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 公共卫生与预防医...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 农学
  • 1 篇 教育学

主题

  • 6 篇 object detection
  • 4 篇 deep learning
  • 4 篇 computer vision
  • 3 篇 benchmarking
  • 3 篇 convolutional ne...
  • 2 篇 deep neural netw...
  • 2 篇 big data
  • 2 篇 image segmentati...
  • 2 篇 numerical simula...
  • 2 篇 predictive model...
  • 2 篇 machine learning
  • 2 篇 mathematics
  • 2 篇 embeddings
  • 2 篇 biomedical imagi...
  • 2 篇 linear transform...
  • 2 篇 object recogniti...
  • 2 篇 training
  • 1 篇 image enhancemen...
  • 1 篇 conferences
  • 1 篇 mammography

机构

  • 8 篇 christian dopple...
  • 7 篇 institute for co...
  • 7 篇 christian dopple...
  • 5 篇 christian dopple...
  • 5 篇 institute of com...
  • 4 篇 department of co...
  • 4 篇 computer vision ...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 lausanne
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 amazon
  • 3 篇 centre for visio...
  • 2 篇 university of sc...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...

作者

  • 11 篇 bischof horst
  • 10 篇 possegger horst
  • 6 篇 lin wei
  • 6 篇 reid ian
  • 6 篇 schiele bernt
  • 5 篇 fruhwirth-reisin...
  • 5 篇 mirza muhammad j...
  • 5 篇 horst possegger
  • 5 篇 horst bischof
  • 5 篇 wei lin
  • 5 篇 mateusz kozinski
  • 4 篇 pulabaigari visw...
  • 4 篇 rezatofighi hami...
  • 4 篇 kozinski mateusz
  • 4 篇 carneiro gustavo
  • 4 篇 mukherjee snehas...
  • 4 篇 m. jehanzeb mirz...
  • 3 篇 fischer jonas
  • 3 篇 shabbeer basha s...
  • 3 篇 roth stefan

语言

  • 74 篇 英文
  • 4 篇 其他
  • 1 篇 德文
检索条件"机构=Institute of Computer Vision and Machine Learning"
79 条 记 录,以下是21-30 订阅
排序:
LaFTer: label-free tuning of zero-shot classifier using language and unlabeled image collections  23
LaFTer: label-free tuning of zero-shot classifier using lang...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: M. Jehanzeb Mirza Leonid Karlinsky Wei Lin Mateusz Kozinski Horst Possegger Rogerio Feris Horst Bischof Institute of Computer Graphics and Vision TU Graz Austria and Christian Doppler Laboratory for Embedded Machine Learning MIT-IBM Watson AI Lab Institute of Computer Graphics and Vision TU Graz Austria
Recently, large-scale pre-trained vision and Language (VL) models have set a new state-of-the-art (SOTA) in zero-shot visual classification enabling open-vocabulary recognition of potentially unlimited set of categori...
来源: 评论
Better Understanding Differences in Attribution Methods via Systematic Evaluations
arXiv
收藏 引用
arXiv 2023年
作者: Rao, Sukrut Böhle, Moritz Schiele, Bernt The Department of Computer Vision and Machine Learning Max Planck Institute for Informatics Saarland Informatics Campus Saarbrücken66123 Germany
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions m... 详细信息
来源: 评论
Overcoming multi-model forgetting
arXiv
收藏 引用
arXiv 2019年
作者: Benyahia, Yassine Yu, Kaicheng Bennani-Smires, Kamil Jaggi, Martin Davison, Anthony Salzmann, Mathieu Musat, Claudiu Institute of mathematics EPFL Computer vision lab EPFL Artificial Intellegence Lab Swisscom Machine learning and optimization lab EPFL
We identify a phenomenon, which we refer to as multi-model forgetting, that occurs when sequentially training multiple deep networks with partially-shared parameters;the performance of previously-trained models degrad... 详细信息
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
arXiv
收藏 引用
arXiv 2022年
作者: Mirza, Muhammad Jehanzeb Soneira, Pol Jané Lin, Wei Kozinski, Mateusz Possegger, Horst Bischof, Horst Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match... 详细信息
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
ActMAD: Activation Matching to Align Distributions for Test-...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: M. Jehanzeb Mirza Pol Jané Soneira Wei Lin Mateusz Kozinski Horst Possegger Horst Bischof Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match...
来源: 评论
Pruning neural network models for gene regulatory dynamics using data and domain knowledge  38
Pruning neural network models for gene regulatory dynamics u...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hossain, Intekhab Fischer, Jonas Burkholz, Rebekka Quackenbush, John Department of Biostatistics Harvard T.H. Chan School of Public Health BostonMA02115 United States Dep. for Computer Vision and Machine Learning Max Planck Institute for Informatics Saarbrücken Germany Helmholtz Center CISPA for Information Security Saarbrücken Germany
The practical utility of machine learning models in the sciences often hinges on their interpretability. It is common to assess a model's merit for scientific discovery, and thus novel insights, by how well it ali...
来源: 评论
Robustness of object detectors in degrading weather conditions
arXiv
收藏 引用
arXiv 2021年
作者: Mirza, Muhammad Jehanzeb Buerkle, Cornelius Jarquin, Julio Opitz, Michael Oboril, Fabian Scholl, Kay-Ulrich Bischof, Horst Christian Doppler Laboratory for Embedded Machine Learning Institute for Computer Graphics and Vision Graz University of Technology Austria Intel Labs Karlsruhe Germany
State-of-the-art object detection systems for autonomous driving achieve promising results in clear weather conditions. However, such autonomous safety critical systems also need to work in degrading weather condition... 详细信息
来源: 评论
MATE: Masked Autoencoders are Online 3D Test-Time Learners
arXiv
收藏 引用
arXiv 2022年
作者: Mirza, M. Jehanzeb Shin, Inkyu Lin, Wei Schriebl, Andreas Sun, Kunyang Choe, Jaesung Possegger, Horst Kozinski, Mateusz Kweon, In So Yoon, Kuk-Jin Bischof, Horst Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Korea Republic of Southeast University China
Our MATE is the first Test-Time-Training (TTT) method designed for 3D data, which makes deep networks trained for point cloud classification robust to distribution shifts occurring in test data. Like existing TTT meth... 详细信息
来源: 评论
Brain tumor cell density estimation from multi-modal MR images based on a synthetic tumor growth model
Brain tumor cell density estimation from multi-modal MR imag...
收藏 引用
15th International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2012
作者: Geremia, Ezequiel Menze, Bjoern H. Prastawa, Marcel Weber, M.-A. Criminisi, Antonio Ayache, Nicholas Asclepios Research Project INRIA Sophia-Antipolis France Computer Science and Artificial Intelligence Laboratory MIT United States Computer Vision Laboratory ETH Zurich Switzerland Scientific Computing and Imaging Institute University of Utah United States Diagnostic and Interventional Radiology Heidelberg University Hospital Germany Machine Learning and Perception Group Microsoft Research Cambridge United Kingdom
This paper proposes to employ a detailed tumor growth model to synthesize labelled images which can then be used to train an efficient data-driven machine learning tumor predictor. Our MR image synthesis step generate... 详细信息
来源: 评论
DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring
arXiv
收藏 引用
arXiv 2021年
作者: Dong, Jiangxin Roth, Stefan Schiele, Bernt School of Computer Science and Engineering Nanjing University of Science and Technology China Department of Computer Vision and Machine Learning Max Planck Institute for Informatics Germany Department of Computer Science TU Darmstadt Germany
We present a simple and effective approach for non-blind image deblurring, combining classical techniques and deep learning. In contrast to existing methods that deblur the image directly in the standard image space, ... 详细信息
来源: 评论