咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 59 篇 会议

馆藏范围

  • 128 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 73 篇 工学
    • 41 篇 计算机科学与技术...
    • 37 篇 软件工程
    • 21 篇 光学工程
    • 18 篇 生物医学工程(可授...
    • 17 篇 生物工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 12 篇 信息与通信工程
    • 10 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 4 篇 化学工程与技术
    • 4 篇 船舶与海洋工程
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
  • 43 篇 理学
    • 19 篇 生物学
    • 18 篇 物理学
    • 14 篇 数学
    • 9 篇 统计学(可授理学、...
    • 4 篇 化学
    • 2 篇 海洋科学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 13 篇 医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 7 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 9 篇 computer vision
  • 7 篇 cameras
  • 5 篇 laboratories
  • 5 篇 robot sensing sy...
  • 5 篇 trajectory
  • 5 篇 autonomous vehic...
  • 5 篇 robot vision sys...
  • 4 篇 magnetic resonan...
  • 4 篇 autonomous under...
  • 4 篇 robot kinematics
  • 4 篇 robotics
  • 3 篇 distillation
  • 3 篇 motion planning
  • 3 篇 anomaly detectio...
  • 3 篇 brain modeling
  • 3 篇 convolution
  • 3 篇 mobile robots
  • 3 篇 computational mo...
  • 3 篇 feature extracti...
  • 3 篇 machine learning

机构

  • 7 篇 siat branch shen...
  • 6 篇 research institu...
  • 5 篇 department of qu...
  • 5 篇 ihu strasbourg s...
  • 5 篇 computer vision ...
  • 5 篇 shenzhen key lab...
  • 5 篇 heidelberg
  • 4 篇 sensetime resear...
  • 4 篇 centre for medic...
  • 4 篇 computer vision ...
  • 4 篇 department of me...
  • 4 篇 faculty of mathe...
  • 4 篇 department of ge...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 robotics institu...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...
  • 3 篇 university of pa...
  • 3 篇 radboud institut...

作者

  • 7 篇 pere ridao
  • 6 篇 valverde sergi
  • 6 篇 narcís palomeras
  • 6 篇 cabezas mariano
  • 6 篇 garcia rafael
  • 6 篇 oliver arnau
  • 5 篇 bakas spyridon
  • 5 篇 chen chen
  • 5 篇 reyes mauricio
  • 5 篇 marc carreras
  • 5 篇 menze bjoern
  • 5 篇 lladó xavier
  • 4 篇 michail maniadak...
  • 4 篇 wiest roland
  • 4 篇 rajpoot nasir
  • 4 篇 haase robert
  • 4 篇 glocker ben
  • 4 篇 kofler florian
  • 4 篇 sudre carole h.
  • 4 篇 zheng ce

语言

  • 109 篇 英文
  • 18 篇 其他
  • 1 篇 中文
检索条件"机构=Institute of Computer Vision and Robotics Research"
128 条 记 录,以下是41-50 订阅
排序:
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
NTIRE 2023 HR NonHomogeneous Dehazing Challenge Report
NTIRE 2023 HR NonHomogeneous Dehazing Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Ancuti, Codruta O. Ancuti, Cosmin Vasluianu, Florin-Alexandru Timofte, Radu Zhou, Han Dong, Wei Liu, Yangyi Chen, Jun Liu, Huan Li, Liangyan Wu, Zijun Dong, Yubo Li, Yuyan Qiu, Tian He, Yu Lu, Yonghong Wu, Yinwei Jiang, Zhenxiang Liu, Songhua Yang, Xingyi Jing, Yongcheng Benjdira, Bilel Ali, Anas M. Koubaa, Anis Yang, Hao-Hsiang Chen, I-Hsiang Chen, Wei-Ting Huang, Zhi-Kai Chen, Yi-Chung Hsieh, Chia-Hsuan Chang, Hua-En Chiang, Yuan-Chun Kuo, Sy-Yen Guo, Yu Gao, Yuan Liu, Ryan Wen Lu, Yuxu Qu, Jingxiang He, Shengfeng Ren, Wenqi Hoang, Trung Zhang, Haichuan Yazdani, Amirsaeed Monga, Vishal Yang, Lehan Wu, Alex Jiahao Mai, Tiancheng Cong, Xiaofeng Yin, Xuemeng Yin, Xuefei Emad, Hazim Abdallah, Ahmed Yasser, Yahya Elshahat, Dalia Elbaz, Esraa Li, Zhan Kuang, Wenqing Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Zhang, Zhao Wei, Yanyan Wang, Junhu Zhao, Suiyi Zheng, Huan Guo, Jin Sun, Yangfan Liu, Tianli Hao, Dejun Jiang, Kui Sarvaiya, Anjali Prajapati, Kalpesh Patra, Ratnadeep Barik, Pragnesh Rathod, Chaitanya Upla, Kishor Raja, Kiran Ramachandra, Raghavendra Busch, Christoph ETcTI Universitatea Politehnica Timisoara Romania ICTEAM UCL Belgium Computer Vision Lab University of Wuerzburg Germany Computer Vision Lab ETH Zurich Switzerland Department of Electrical and Computer Engineering McMaster University Canada Department of Electrical and Computer Engineering University of Alberta Canada McMaster University Canada Xidian University China Research Institute Singapore National University of Singapore Singapore University of Sydney Australia Robotics and Internet-of-Things Laboratory Prince Sultan University Riyadh12435 Saudi Arabia Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan Wuhan University of Technology China Singapore Management University Singapore Singapore Sun Yat-sen University China Electrical Engineering Department Pennsylvania State University United States The University of Sydney Australia Southeast University China University of California Los Angeles United States Beijing Jiaotong University China Mansoura Univeristy Egypt College of Information Science and Technology Jinan University China Department of Information Technology Uppsala University Sweden Hefei University of Technology China Zhejiang Dahua Technology China Sardar Vallabhbhai National Institute of Technology India Norwegian University of Science and Technology Norway
This study assesses the outcomes of the NTIRE 2023 Challenge on Non-Homogeneous Dehazing, wherein novel techniques were proposed and evaluated on new image dataset called HD-NH-HAZE. The HD-NH-HAZE dataset contains 50... 详细信息
来源: 评论
Robotic workcell for sole grasping in footwear manufacturing
Robotic workcell for sole grasping in footwear manufacturing
收藏 引用
International Conference on Emerging Technologies and Factory Automation (ETFA)
作者: Guillermo Oliver Pablo Gil Fernando Torres Automatics Robotics and Artificial Vision Lab (AUROVA). Computer Science Research Institute University of Alicante Spain
The goal of this paper is to present a robotic workcell to automate several tasks of the cementing process in footwear manufacturing. Our cell's main applications are sole digitization of a wide variety of footwea...
来源: 评论
CertainOdom: Uncertainty Weighted Multi-task Learning Model for LiDAR Odometry Estimation
CertainOdom: Uncertainty Weighted Multi-task Learning Model ...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Leyuan Sun Guanqun Ding Yusuke Yoshiyasu Fumio Kanehiro Department of Intelligent and Mechanical Interaction Systems Graduate School of Science and Technology University of Tsukuba Tsukuba Ibaraki Japan CNRS-AIST Joint Robotics Laboratory (JRL) IRL National Institute of Advanced Industrial Science and Technology (AIST). Digital Architecture Research Center (DARC) National Institute of Advanced Industrial Science and Technology (AIST) Tokyo Japan Computer Vision Research Team Artificial Intelligence Research Center (AIRC) National Institute of Advanced Industrial Science and Technology (AIST) Japan
As a basic and indispensable module, LiDAR odom-etry estimation is widely used in robotics. In recent years, learning-based modeling approaches for odometry estimation have been validated to be feasible. However, it i... 详细信息
来源: 评论
Fair Evaluation of Federated Learning Algorithms for Automated Breast Density Classification: The Results of the 2022 ACR-NCI-NVIDIA Federated Learning Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Schmidt, Kendall Bearce, Benjamin Chang, Ken Coombs, Laura Farahani, Keyvan Elbatel, Marawan Mouheb, Kaouther Marti, Robert Zhang, Ruipeng Zhang, Yao Wang, Yanfeng Hu, Yaojun Ying, Haochao Xu, Yuyang Testagrose, Conrad Demirer, Mutlu Gupta, Vikash Akünal, Ünal Bujotzek, Markus Maier-Hein, Klaus H. Qin, Yi Li, Xiaomeng Kalpathy-Cramer, Jayashree Roth, Holger R. American College of Radiology United States The Massachusetts General Hospital United States University of Colorado United States National Institutes of Health National Cancer Institute United States Computer Vision and Robotics Institute University of Girona Spain Cooperative Medianet Innovation Center Shanghai Jiao Tong University China Shanghai AI Laboratory China Real Doctor AI Research Centre Zhejiang University China School of Public Health Zhejiang University China College of Computer Science and Technology Zhejiang University China University of North Florida College of Computing Jacksonville United States Mayo Clinic Florida Radiology United States Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Electronic and Computer Engineering Hong Kong University of Science and Technology China NVIDIA United States
The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characte... 详细信息
来源: 评论
Navigation Command Matching for vision-based Autonomous Driving
Navigation Command Matching for Vision-based Autonomous Driv...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Yuxin Pan Jianru Xue Pengfei Zhang Wanli Ouyang Jianwu Fang Xingyu Chen Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University China SenseTime Computer Vision Research Group University of Sydney Australia
Learning an optimal policy for autonomous driving task to confront with complex environment is a long- studied challenge. Imitative reinforcement learning is accepted as a promising approach to learn a robust driving ... 详细信息
来源: 评论
Collaborative Multi-View Convolutions With Gating For Accurate And Fast Volumetric Medical Image Segmentation
Collaborative Multi-View Convolutions With Gating For Accura...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Cheng Li Jin Ye Junjun He Shanshan Wang Lixu Gu Yu Qiao Paul C. Lauterbur Research Center for Biomedical Imaging SIAT CAS Shenzhen China Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab SIAT CAS Shenzhen China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Biomedical Engineering/the Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Due to their high capacity in capturing 3D spatial information, 3D Fully Convolutional Neural Networks (3D FCNs), especially 3D U-Net, are prevalent for volumetric medical image segmentation. However, 3D convolutions ... 详细信息
来源: 评论
Robust and Precise Facial Landmark Detection by Self-Calibrated Pose Attention Network
arXiv
收藏 引用
arXiv 2021年
作者: Wan, Jun Xi, Hui Zhou, Jie Lai, Zhihui Pedrycz, Witold Wang, Xu Sun, Hang School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan430073 China College of Computer Science and Software Engineering Shen zhen University Shenzhen518060 China Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China Department of Electrical & Computer Engineering University of Alberta Edmonton Canada Systems Research Institute Polish Academy of Sciences Warsaw Poland College of Computer and Information Technology China Three Gorges University Yichang HuBei China
Current fully-supervised facial landmark detection methods have progressed rapidly and achieved remarkable performance. However, they still suffer when coping with faces under large poses and heavy occlusions for inac... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论