咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 59 篇 会议

馆藏范围

  • 128 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 73 篇 工学
    • 41 篇 计算机科学与技术...
    • 37 篇 软件工程
    • 21 篇 光学工程
    • 18 篇 生物医学工程(可授...
    • 17 篇 生物工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 12 篇 信息与通信工程
    • 10 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 4 篇 化学工程与技术
    • 4 篇 船舶与海洋工程
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
  • 43 篇 理学
    • 19 篇 生物学
    • 18 篇 物理学
    • 14 篇 数学
    • 9 篇 统计学(可授理学、...
    • 4 篇 化学
    • 2 篇 海洋科学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 13 篇 医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 7 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 9 篇 computer vision
  • 7 篇 cameras
  • 5 篇 laboratories
  • 5 篇 robot sensing sy...
  • 5 篇 trajectory
  • 5 篇 autonomous vehic...
  • 5 篇 robot vision sys...
  • 4 篇 magnetic resonan...
  • 4 篇 autonomous under...
  • 4 篇 robot kinematics
  • 4 篇 robotics
  • 3 篇 distillation
  • 3 篇 motion planning
  • 3 篇 anomaly detectio...
  • 3 篇 brain modeling
  • 3 篇 convolution
  • 3 篇 mobile robots
  • 3 篇 computational mo...
  • 3 篇 feature extracti...
  • 3 篇 machine learning

机构

  • 7 篇 siat branch shen...
  • 6 篇 research institu...
  • 5 篇 department of qu...
  • 5 篇 ihu strasbourg s...
  • 5 篇 computer vision ...
  • 5 篇 shenzhen key lab...
  • 5 篇 heidelberg
  • 4 篇 sensetime resear...
  • 4 篇 centre for medic...
  • 4 篇 computer vision ...
  • 4 篇 department of me...
  • 4 篇 faculty of mathe...
  • 4 篇 department of ge...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 robotics institu...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...
  • 3 篇 university of pa...
  • 3 篇 radboud institut...

作者

  • 7 篇 pere ridao
  • 6 篇 valverde sergi
  • 6 篇 narcís palomeras
  • 6 篇 cabezas mariano
  • 6 篇 garcia rafael
  • 6 篇 oliver arnau
  • 5 篇 bakas spyridon
  • 5 篇 chen chen
  • 5 篇 reyes mauricio
  • 5 篇 marc carreras
  • 5 篇 menze bjoern
  • 5 篇 lladó xavier
  • 4 篇 michail maniadak...
  • 4 篇 wiest roland
  • 4 篇 rajpoot nasir
  • 4 篇 haase robert
  • 4 篇 glocker ben
  • 4 篇 kofler florian
  • 4 篇 sudre carole h.
  • 4 篇 zheng ce

语言

  • 109 篇 英文
  • 18 篇 其他
  • 1 篇 中文
检索条件"机构=Institute of Computer Vision and Robotics Research"
128 条 记 录,以下是61-70 订阅
排序:
Efficient MedSAMs: Segment Anything in Medical Images on Laptop
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Jun Li, Feifei Kim, Sumin Asakereh, Reza Le, Bao-Hiep Nguyen-Vu, Dang-Khoa Pfefferle, Alexander Wei, Muxin Gao, Ruochen Lyu, Donghang Yang, Songxiao Purucker, Lennart Marinov, Zdravko Staring, Marius Lu, Haisheng Dao, Thuy Thanh Ye, Xincheng Li, Zhi Brugnara, Gianluca Vollmuth, Philipp Foltyn-Dumitru, Martha Cho, Jaeyoung Mahmutoglu, Mustafa Ahmed Bendszus, Martin Pflüger, Irada Rastogi, Aditya Ni, Dong Yang, Xin Zhou, Guang-Quan Wang, Kaini Heller, Nicholas Papanikolopoulos, Nikolaos Weight, Christopher Tong, Yubing Udupa, Jayaram K. Patrick, Cahill J. Wang, Yaqi Zhang, Yifan Contijoch, Francisco McVeigh, Elliot Ye, Xin He, Shucheng Haase, Robert Pinetz, Thomas Radbruch, Alexander Krause, Inga Kobler, Erich He, Jian Tang, Yucheng Yang, Haichun Huo, Yuankai Luo, Gongning Kushibar, Kaisar Amankulov, Jandos Toleshbayev, Dias Mukhamejan, Amangeldi Egger, Jan Pepe, Antonio Gsaxner, Christina Luijten, Gijs Fujita, Shohei Kikuchi, Tomohiro Wiestler, Benedikt Kirschke, Jan S. de la Rosa, Ezequiel Bolelli, Federico Lumetti, Luca Grana, Costantino Xie, Kunpeng Wu, Guomin Puladi, Behrus Martín-Isla, Carlos Lekadir, Karim Campello, Victor M. Shao, Wei Brisbane, Wayne Jiang, Hongxu Wei, Hao Yuan, Wu Li, Shuangle Zhou, Yuyin Wang, Bo AI Collaborative Centre University Health Network Department of Laboratory Medicine and Pathobiology University of Toronto Vector Institute Toronto Canada Peter Munk Cardiac Centre University Health Network Toronto Canada Toronto General Hospital Research Institute University Health Network Department of Computer Science University of Toronto University Health Network Vector Institute Toronto Canada University of Science Vietnam National University Ho Chi Minh City Viet Nam Institute of Computer Science University of Freiburg Freiburg Germany School of Medicine and Health Harbin Institute of Technology Harbin China Division of Image Processing Department of Radiology Leiden University Medical Center Leiden Netherlands Department of System and Control Engineering School of Engineering Institute of Science Tokyo Formerly Tokyo Institute of Technology Tokyo Japan Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe Germany School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu China School of Electrical Engineering and Computer Science University of Queensland Brisbane Australia School of Cyberspace Hangzhou Dianzi University Hangzhou China Division for Computational Radiology and Clinical AI The Department of Neuroradiology University Hospital Bonn Germany Division for Computational Radiology and Clinical AI The Department of Neuroradiology University Hospital Bonn Germany Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany Division for Computational Radiology and Clinical AI Department of Neuroradiology University Hospital Bonn Germany School of Biomedical Engineering Shenzhen University Shenzhen China School of Biological Science and Medical Engineering Southeast University Nanjing China Department of Urology Cleveland Clinic Cleveland United States Department of Computer Science University of Minnesota Minneapolis United St
Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to thei... 详细信息
来源: 评论
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Data Science Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
The Method of Neural Network Control over the Process of Manufacturing Foil Solar Panels  2
The Method of Neural Network Control over the Process of Man...
收藏 引用
2nd IEEE International Conference on System Analysis and Intelligent Computing, SAIC 2020
作者: Sachenko, Anatoliy Ivakhiv, Orest Vyshnia, Volodymyr Grzeszczyk, Konrad Osolinskyi, Oleksandr Novosad, Stanislav Kochan, Volodymyr Nakonechnyi, Markiyan Kochan, Orest Kopania, Lukasz Kazimierz Pulaski University of Technology and Humanities in Radom Department of Informatics Radom Poland Lviv Polytechnic National University Department of Intelligent Mechatronics and Robotics Lviv Ukraine Dnipropetrovsk State University of Internal Affairs Department of Economic and Information Security Dnipro Ukraine International Vision Machinery VISORT Sp. J Radom Poland Ternopil National Economic University Department for Information Computer Systems and Control Ternopil Ukraine Ternopil National Economic University Research Institute for Intelligent Computer Systems Ternopil Ukraine Lviv Polytechnic National University Department of Computerized Automation Systems Lviv Ukraine Lviv Polytechnic National University Department of Measuring Information Technologies Lviv Ukraine
Authors have developed a method of control over one of the main technological processes of manufacturing foil solar panels, i.e., burning tracks in the layers of semiconductor material and insulation. The proposed met... 详细信息
来源: 评论
Group shift pointwise convolution for volumetric medical image segmentation
arXiv
收藏 引用
arXiv 2021年
作者: He, Junjun Ye, Jin Li, Cheng Song, Diping Chen, Wanli Wang, Shanshan Gu, Lixu Qiao, Yu School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China Shanghai AI Lab Shanghai China Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China The Chinese University of Hong Kong Hong Kong Peng Cheng Laboratory Guangdong Shenzhen China Pazhou Lab Guangdong Guangzhou China
Recent studies have witnessed the effectiveness of 3D convolutions on segmenting volumetric medical images. Compared with the 2D counterparts, 3D convolutions can capture the spatial context in three dimensions. Never... 详细信息
来源: 评论
A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge
arXiv
收藏 引用
arXiv 2024年
作者: de la Rosa, Ezequiel Reyes, Mauricio Liew, Sook-Lei Hutton, Alexandre Wiest, Roland Kaesmacher, Johannes Hanning, Uta Hakim, Arsany Zubal, Richard Valenzuela, Waldo Robben, David Sima, Diana M. Anania, Vincenzo Brys, Arne Meakin, James A. Mickan, Anne Broocks, Gabriel Heitkamp, Christian Gao, Shengbo Liang, Kongming Zhang, Ziji Siddiquee, Md Mahfuzur Rahman Myronenko, Andriy Ashtari, Pooya Van Huffel, Sabine Jeong, Hyun-Su Yoon, Chi-Ho Kim, Chulhong Huo, Jiayu Ourselin, Sebastien Sparks, Rachel Clèrigues, Albert Oliver, Arnau Lladó, Xavier Chalcroft, Liam Pappas, Ioannis Bertels, Jeroen Heylen, Ewout Moreau, Juliette Hatami, Nima Frindel, Carole Qayyum, Abdul Mazher, Moona Puig, Domenec Lin, Shao-Chieh Juan, Chun-Jung Hu, Tianxi Boone, Lyndon Goubran, Maged Liu, Yi-Jui Wegener, Susanne Kofler, Florian Ezhov, Ivan Shit, Suprosanna Hernandez Petzsche, Moritz R. Menze, Bjoern Kirschke, Jan S. Wiestler, Benedikt Department of Quantitative Biomedicine University of Zurich Zurich Switzerland Department of Informatics Technical University Munich Germany Icometrix Leuven Belgium ARTORG Center for Biomedical Research University of Bern Bern Switzerland Department of Radiation Oncology University Hospital Bern University of Bern Switzerland University of Bern Bern Switzerland Chan Division of Occupational Science and Occupational Therapy University of Southern California Los AngelesCA United States Stevens Neuroimaging and Informatics Institute Department of Neurology Keck School of Medicine University of Southern California United States University Institute of Diagnostic and Interventional Neuroradiology Inselspital Bern Switzerland University Institute of Diagnostic and Interventional Neuroradiology University Hospital Bern Inselspital University of Bern Bern Switzerland Department of Diagnostic and Interventional neuroradiology University Medical Center Hamburg-Eppendorf Hamburg Germany Department of Medical Imaging Radboud University Medical Center Institute for Health Sciences Nijmegen Netherlands Deepwise AI Lab Beijing China Beijing University of Posts and Telecommunications Bejing China School of Computing and Augmented Intelligence Arizona State University TempeAZ United States NVIDIA Santa ClaraCA United States STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Leuven Belgium Pohang Korea Republic of School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom Institute of Computer Vision and Robotics University of Girona Spain Wellcome Centre for Human Neuroimaging University College London London United Kingdom Laboratory of Neuro Imaging Stevens Institute for Neuroimaging and Informatics Keck School of Medicine University of Southern California Los Angeles United States KU Leuven Leuven Belgium CREATIS Université Lyon1 CNRS UMR5220 INSERM U1206 INSA-Lyon Villeurbanne696
Diffusion-weighted MRI (DWI) is essential for stroke diagnosis, treatment decisions, and prognosis. However, image and disease variability hinder the development of generalizable AI algorithms with clinical value. We ... 详细信息
来源: 评论
Image quality assessment for perceptual image restoration: A new dataset, benchmark and metric
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Electrical and Information Engineering University of Sydney Australia Chinese University of Hong Kong Shenzhen Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent perceptual IR algorithms based on generative adversarial networks (GANs) have brought in ... 详细信息
来源: 评论
BasicVSR: The search for essential components in video super-resolution and beyond
arXiv
收藏 引用
arXiv 2020年
作者: Chan, Kelvin C.K. Wang, Xintao Yu, Ke Dong, Chao Loy, Chen Change S-Lab Nanyang Technological University Singapore Applied Research Center Tencent PCG CUHK – SenseTime Joint Lab Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video super-resolution (VSR) approaches tend to have more components than the image counterparts as they need to exploit the additional temporal dimension. Complex designs are not uncommon. In this study, we wish to u... 详细信息
来源: 评论
Survival prediction using ensemble tumor segmentation and transfer learning
arXiv
收藏 引用
arXiv 2018年
作者: Cabezas, Mariano Valverde, Sergi González-Villà, Sandra Clérigues, Albert Salem, Mostafa Kushibar, Kaisar Bernal, Jose Oliver, Arnau Lladó, Xavier Research Institute of Computer Vision and Robotics University of Girona Spain
Segmenting tumors and their subregions is a challenging task as demonstrated by the annual BraTS challenge. Moreover, predicting the survival of the patient using mainly imaging features, while being a desirable outco... 详细信息
来源: 评论
A novel hybrid convolutional neural network for accurate organ segmentation in 3d head and neck CT images
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Zijie Li, Cheng He, Junjun Ye, Jin Song, Diping Wang, Shanshan Gu, Lixu Qiao, Yu Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China Shanghai AI Lab Shanghai China Shenzhen Yino Intelligence Techonology Co. Ltd. Guangdong Shenzhen China Co. Ltd. Guangdong Shenzhen China Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Peng Cheng Laboratory Guangdong Shenzhen China Pazhou Lab Guangdong Guangzhou China
Radiation therapy (RT) is widely employed in the clinic for the treatment of head and neck (HaN) cancers. An essential step of RT planning is the accurate segmentation of various organs-at-risks (OARs) in HaN CT image... 详细信息
来源: 评论
Multiple sclerosis lesion synthesis in MRI using an encoder-decoder U-NET
arXiv
收藏 引用
arXiv 2019年
作者: Salem, Mostafa Valverde, Sergi Cabezas, Mariano Pareto, Deborah Oliver, Arnau Salvi, Joaquim Rovira, Alex Llado, Xavier Research Institute of Computer Vision and Robotics University of Girona Girona17003 Spain Computer Science Department Faculty of Computers and Information Assiut University Egypt Magnetic Resonance Unit Dept of Radiology Vall d'Hebron University Hospital Spain
In this paper, we propose generating synthetic multiple sclerosis (MS) lesions on MRI images with the final aim to improve the performance of supervised machine learning algorithms, therefore avoiding the problem of t... 详细信息
来源: 评论