One unique capability of fluid antenna system (FAS) is its position reconfigurability for enhancing wireless communication systems. This reconfigurability allows FASs to fully exploit spatial diversity, leading to sig...
详细信息
Byzantine distributed quickest change detection (BDQCD) is a crucial problem in cyber-physical security. The challenge of this problem is that an AI plus IoT (AIoT) network needs to detect the change as quickly as pos...
详细信息
In this article, a live solution for data acquisition from sensors and its representation on a web interface is discussed with the help of a Raspberry Pi in which MQTT is used for communication the Flask as the framew...
详细信息
There is an urgent need to control global warming caused by humans to achieve a sustainable ***_(2) levels are rising steadily,and while countries worldwide are actively moving toward the sustainability goals proposed...
详细信息
There is an urgent need to control global warming caused by humans to achieve a sustainable ***_(2) levels are rising steadily,and while countries worldwide are actively moving toward the sustainability goals proposed during the Paris Agreement in 2015,we are still a long way to go from achieving a sustainable mode of global *** increased popularity of cryptocurrencies since the introduction of Bitcoin in 2009 has been accompanied by an increasing trend in greenhouse gas emissions and high electrical energy *** energy tracking studies(e.g.,Digiconomist and the Cambridge Bitcoin Energy Consumption Index(CBECI))have estimated energy consumption ranges from 29.96 TWh to 135.12 TWh and 26.41 TWh to 176.98 TWh,respectively for Bitcoin as of July 2021,which are equivalent to the energy consumption of countries such as Sweden and *** latest estimate by Digiconomist on carbon footprints shows a 64.18 MtCO_(2) emission by Bitcoin as of July 2021,close to the emissions by Greece and *** review compiles estimates made by various studies from 2018 to *** compare the energy consumption and carbon footprints of these cryptocurrencies with countries around the world and centralized transaction methods such as *** identify the problems associated with cryptocurrencies and propose solutions that can help reduce their energy consumption and carbon ***,we present case studies on cryptocurrency networks,namely,Ethereum 2.0 and Pi Network,with a discussion on how they can solve some of the challenges we have identified.
This article discusses the compact modeling of organic thin-film transistors (OTFTs) fabricated on both flexible and silicon substrates. These compact models are used to implement inverters, 2-input NAND gate, and hal...
详细信息
Polymer nanocomposites have been a topic of intensive research regarding High Voltage engineering since the nineties of the last century. They present an alternative to conventional polymers since the latter were diag...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network *** study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic *** primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss ***,a carbon tax is included in the objective function to reduce carbon *** scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal *** results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution ***,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)*** research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local *** emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
Real-time systems experience many safety and performance issues at run time due to different uncertainties in the environment. Systems are now becoming highly interactive and must be able to execute in a changing envi...
详细信息
Real-time systems experience many safety and performance issues at run time due to different uncertainties in the environment. Systems are now becoming highly interactive and must be able to execute in a changing environment without experiencing any failure. A real-time system can have multiple modes of operation such as safety and performance. The system can satisfy its safety and performance requirements by switching between the modes at run time. It is essential for the designers to ensure that a multi-mode real-time system operates in the expected mode at run time. In this paper, we present a verification model that identifies the expected mode at run time and checks whether the multi-mode real-time system is operating in the correct mode or not. To determine the expected mode, we present a monitoring module that checks the environment of the system, identifies different real-world occurrences as events, determines their properties and creates an event-driven dataset for failure analysis. The dataset consumes less memory in comparison to the raw input data obtained from the monitored environment. The event-driven dataset also facilitates onboard decision-making because the dataset allows the system to perform a safety analysis by determining the probability of failure in each environmental situations. We use the probability of failure of the system to determine the safety mode in different environmental situations. To demonstrate the applicability of our proposed scheme, we design and implement a real-time traffic monitoring system that has two modes: safety, and performance. The experimental analysis of our work shows that the verification model can identify the expected operating mode at run time based on the safety (probability of failure) and performance (usage) requirements of the system as well as allows the system to operate in performance mode (in 3295 out of 3421 time intervals) and safety mode (in 126 out of 3421 time intervals). The experimental resul
Purpose: Coronavirus disease 2019 (COVID-19) has infected about 418 million people across the globe. So, the analysis of biomedical imaging accompanied with artificial intelligence (AI) approaches has transpired a vit...
详细信息
Purpose: Coronavirus disease 2019 (COVID-19) has infected about 418 million people across the globe. So, the analysis of biomedical imaging accompanied with artificial intelligence (AI) approaches has transpired a vital role in diagnosing COVID-19. Until now, numerous classification approaches have been demonstrated for the detection of COVID-19. The assessment of COVID-19 patients according to severity level is not so far investigated. For this motivation, the classification of COVID-19 chest X-ray (CXR) images according to severity of the infection is presented in this work. Methods: Primarily, the 1527 CXR images are pre-processed to reshape images into unique size, denoised, and enhanced images through median filter and histogram equalization (HE) techniques, respectively. Afterward, reshaped, denoised, and enhanced CXR images are augmented using synthetic minority oversampling technique (SMOTE) to achieve the balanced dataset of 1752 CXR images. After augmentation, a pre-trained VGG16 and residual network 50 (Resnet50) deep transfer learning models with random forest (RF) and support vector machine (SVM) classifiers are utilized for feature extraction and classification of 1752 CXR images into diverse class labels such as normal, severe COVID-19, and non-severe COVID-19. Results: Our proposed ResNet50 model with SVM classifier provides the highest accuracy of about 95% for severity assessment and classification of COVID-19 CXR images as compared to other permutations. For the ResNet50 model with SVM classifier model, the average value of precision, recall, and F1-score are 91%, 94%, and 92%, respectively. Conclusion: The multi-class classification deep transfer learning models are presented to determine the severity assessment and classification of COVID-19 by using CXR images. Out of these proposed models, the ResNet50 model with SVM classifier will be highly favorable for doctors to classify patients according to their severity assessment and detection of COV
For most developed nations, agriculture is a significant economic force. The realm of contemporary agriculture is consistently growing with evolving farming techniques and agricultural innovations. Farmers face challe...
详细信息
暂无评论