咨询与建议

限定检索结果

文献类型

  • 1,508 篇 会议
  • 1,441 篇 期刊文献

馆藏范围

  • 2,949 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,995 篇 工学
    • 762 篇 计算机科学与技术...
    • 715 篇 软件工程
    • 674 篇 控制科学与工程
    • 388 篇 机械工程
    • 335 篇 电气工程
    • 228 篇 化学工程与技术
    • 175 篇 信息与通信工程
    • 170 篇 电子科学与技术(可...
    • 168 篇 动力工程及工程热...
    • 158 篇 仪器科学与技术
    • 140 篇 生物工程
    • 127 篇 材料科学与工程(可...
    • 125 篇 交通运输工程
    • 95 篇 生物医学工程(可授...
    • 89 篇 力学(可授工学、理...
    • 88 篇 光学工程
    • 83 篇 环境科学与工程(可...
    • 75 篇 冶金工程
    • 66 篇 土木工程
    • 66 篇 安全科学与工程
  • 1,084 篇 理学
    • 516 篇 数学
    • 271 篇 物理学
    • 228 篇 系统科学
    • 193 篇 化学
    • 175 篇 生物学
    • 163 篇 统计学(可授理学、...
  • 437 篇 管理学
    • 387 篇 管理科学与工程(可...
    • 105 篇 工商管理
  • 115 篇 医学
    • 85 篇 临床医学
    • 69 篇 基础医学(可授医学...
  • 64 篇 经济学
  • 60 篇 法学
  • 49 篇 农学
  • 12 篇 艺术学
  • 9 篇 文学
  • 6 篇 教育学
  • 6 篇 军事学

主题

  • 46 篇 feature extracti...
  • 43 篇 optimization
  • 43 篇 training
  • 39 篇 deep learning
  • 37 篇 neural networks
  • 35 篇 reinforcement le...
  • 32 篇 machine learning
  • 31 篇 stability analys...
  • 31 篇 trajectory
  • 31 篇 robustness
  • 30 篇 robots
  • 30 篇 uncertainty
  • 30 篇 nonlinear system...
  • 29 篇 three-dimensiona...
  • 29 篇 computational mo...
  • 29 篇 mathematical mod...
  • 29 篇 transportation
  • 29 篇 heuristic algori...
  • 28 篇 accuracy
  • 28 篇 optimal control

机构

  • 215 篇 state key labora...
  • 159 篇 state key labora...
  • 105 篇 university of ch...
  • 104 篇 state key labora...
  • 103 篇 the state key la...
  • 84 篇 state key labora...
  • 78 篇 school of automa...
  • 75 篇 school of artifi...
  • 64 篇 state key labora...
  • 57 篇 the state key la...
  • 52 篇 ieee
  • 50 篇 school of automa...
  • 50 篇 state key labora...
  • 49 篇 qingdao academy ...
  • 39 篇 huzhou institute...
  • 35 篇 huzhou institute...
  • 35 篇 state key labora...
  • 34 篇 state key labora...
  • 33 篇 the state key la...
  • 32 篇 state key labora...

作者

  • 103 篇 fei-yue wang
  • 91 篇 hongye su
  • 69 篇 gao fei
  • 61 篇 wang fei-yue
  • 58 篇 xu chao
  • 56 篇 su hongye
  • 51 篇 wang yue
  • 51 篇 gang xiong
  • 49 篇 xiong rong
  • 43 篇 zhitao liu
  • 33 篇 xiong gang
  • 30 篇 lei xie
  • 29 篇 jian chu
  • 29 篇 zhihuan song
  • 27 篇 fei gao
  • 27 篇 chao xu
  • 27 篇 qinglai wei
  • 25 篇 weimin wu
  • 25 篇 rong xiong
  • 24 篇 zhen shen

语言

  • 2,747 篇 英文
  • 103 篇 中文
  • 95 篇 其他
检索条件"机构=Institute of Cyber-Systems and Control State Key Laboratory of Industrial Control Technology"
2949 条 记 录,以下是171-180 订阅
排序:
Fast Iterative Region Inflation for Computing Large 2-D/3-D Convex Regions of Obstacle-Free Space
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Qianhao Wang, Zhepei Wang, Mingyang Ji, Jialin Han, Zhichao Wu, Tianyue Jin, Rui Gao, Yuman Xu, Chao Gao, Fei State Key Laboratory of Industrial Control Technology Institute of Cyber-Systems and Control Zhejiang University Hangzhou310027 China Huzhou Institute Zhejiang University Huzhou313000 China
Convex polytopes have compact representations and exhibit convexity, which makes them suitable for abstracting obstacle-free spaces from various environments. Existing generation methods struggle with balancing high-q... 详细信息
来源: 评论
The Journey/DAO/TAO of Embodied Intelligence: From Large Models to Foundation Intelligence and Parallel Intelligence
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第6期11卷 1313-1316页
作者: Tianyu Shen Jinlin Sun Shihan Kong Yutong Wang Juanjuan Li Xuan Li Fei-Yue Wang College of Information Science and Technology Beijing University of Chemical TechnologyBeijing 100029China School of Electrical and Information Engineering Jiangsu UniversityZhenjiang 212013China State Key Laboratory for Turbulence and Complex Systems Department of Advanced Manufacturing and RoboticsCollege of EngineeringPeking UniversityBeijing 100871China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of AutomationChinese Academy of SciencesBeijing 100190China Peng Cheng Laboratory Shenzhen 518000China State Key Laboratory for Management and Control of Complex Systems Chinese Academy of SciencesBeijing 100190 Faculty of Innovation Engineering Macao University of Science and TechnologyMacao 999078China IEEE
THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to pos... 详细信息
来源: 评论
A Deep Reinforcement Learning control Method for a Four-Link Brachiation Robot  2
A Deep Reinforcement Learning Control Method for a Four-Link...
收藏 引用
2nd International Conference on Machine Learning, Cloud Computing, and Intelligent Mining, MLCCIM 2023
作者: Zhang, Xuanyu Ji, Zishang Zhang, Haodong Xiong, Rong School of Mechatronical Engineering Beijing Institute of Technology Beijing China Zhejiang University State Key Laboratory of Industrial Control and Technology Hangzhou China
Brachiation is a common way for primates to move between treetops. This movement has the characteristics of adapting to complex, discontinuous environment and low energy consumption. However, traditional control metho... 详细信息
来源: 评论
Novel Multimode Process Soft Sensing Methods Based on the Dynamic Mixture Variational Autoencoder Regression Model  11
Novel Multimode Process Soft Sensing Methods Based on the Dy...
收藏 引用
11th IEEE Data Driven control and Learning systems Conference, DDCLS 2022
作者: Cui, Linlin Yao, Le Ge, Zhiqiang Song, Zhihuan Institute of Industrial Process Control College of Control Science and Engineering Zhejiang University State Key Laboratory of Industrial Control Technology Hangzhou310027 China
Modern industrial processes with increasing complexity not only contain nonlinear and multi-mode characteristics, but also are commonly the dynamic processes, which brought challenging problems to soft sensor modeling... 详细信息
来源: 评论
ColAG: A Collaborative Air-Ground Framework for Perception-Limited UGVs’ Navigation
ColAG: A Collaborative Air-Ground Framework for Perception-L...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Zhehan Li Rui Mao Nanhe Chen Chao Xu Fei Gao Yanjun Cao State Key Laboratory of Industrial Control Technology Institute of Cyber-Systems and Control Zhejiang University Hangzhou China Huzhou Institute of Zhejiang University Huzhou China Dalian University of Technology China
Perception is necessary for autonomous navigation in an unknown area crowded with obstacles. It’s challenging for a robot to navigate safely without any sensors that can sense the environment, resulting in a blind ro... 详细信息
来源: 评论
Point Cloud Classification Using Content-Based Transformer via Clustering in Feature Space
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第1期11卷 231-239页
作者: Yahui Liu Bin Tian Yisheng Lv Lingxi Li Fei-Yue Wang the State Key Laboratory for Management and Control of Complex Systems Institute of AutomationChinese Academy of SciencesBeijing 100190 the School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100190 IEEE the Transportation and Autonomous Systems Institute(TASI)and the Department of Electrical and Computer Engineering Purdue School of Engineering and TechnologyIndiana University-Purdue University Indianapolis(IUPUI)Indianapolis 46202 USA
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est... 详细信息
来源: 评论
Design and Experimental Validation of a Worm-Like Tensegrity Robot for In-Pipe Locomotion
收藏 引用
Journal of Bionic Engineering 2023年 第2期20卷 515-529页
作者: Xiaolin Dai Yixiang Liu Wei Wang Rui Song Yibin Li Jie Zhao School of Control Science and Engineering Shandong UniversityJinan250061China Engineering Research Center of Intelligent Unmanned System of Ministry of Education Jinan250061China Shandong Research Institute of Industrial Technology Jinan250061China State Key Laboratory of Robotics and System Harbin Institute of TechnologyHarbin150080China
Traditional rigid-body in-pipe robots usually have complex and heavy structures with limited flexibility and *** soft in-pipe robots have great improvements in flexibility,they still have manufacturing difficulties du... 详细信息
来源: 评论
Comprehensive Gear Shift Schedule Design for 2-AMT Electric Vehicles Based on Sparrow Search Algorithm  42
Comprehensive Gear Shift Schedule Design for 2-AMT Electric ...
收藏 引用
42nd Chinese control Conference, CCC 2023
作者: Wang, Tianyi Ma, Liling Wang, Junzheng School of Automation State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing Institute of Technology Beijing100081 China
With the aim of 2-AMT electric vehicles, a comprehensive shift schedule that considers both power and economy is proposed. First, the objective function of the comprehensive shift schedule is constructed, which is the... 详细信息
来源: 评论
The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire
收藏 引用
Journal of Energy Chemistry 2022年 第2期31卷 532-540页
作者: Yujun Liu Kai Yang Mingjie Zhang Shi Li Fei Gao Qiangling Duan Jinhua Sun Qingsong Wang State Key Laboratory of Fire Science University of Science and Technology of ChinaHefei 230026AnhuiChina State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems China Electric Power Research InstituteBeijing 100192China
Currently,the effective and clean suppression of lithium-ion battery(LIB)fires remains a *** present work investigates the use of various inhibitor doses(Xin)of dodecafluoro-2-methylpentan-3-one(C_(6) F_(12)O)in 300 A... 详细信息
来源: 评论
A Novel Sensor Scheduling Algorithm Based on Deep Reinforcement Learning for Bearing-Only Target Tracking in UWSNs
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第4期10卷 1077-1079页
作者: Linyao Zheng Meiqin Liu Senlin Zhang Jian Lan Institute of Artificial Intelligence and Robotics Xi’an Jiaotong UniversityXi’an 710049 State Key Laboratory of Industrial Control Technology Zhejiang UniversityHangzhou 310027China College of Electrical Engineering Zhejiang UniversityHangzhou 310027China
Dear Editor,This letter is concerned with the energy-aware multiple sensor coscheduling for bearing-only target tracking in the underwater wireless sensor networks(UWSNs).Considering the traditional methods facing wit... 详细信息
来源: 评论