咨询与建议

限定检索结果

文献类型

  • 2,339 篇 期刊文献
  • 1,830 篇 会议
  • 18 册 图书

馆藏范围

  • 4,187 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,634 篇 工学
    • 1,903 篇 计算机科学与技术...
    • 1,601 篇 软件工程
    • 574 篇 信息与通信工程
    • 409 篇 生物工程
    • 326 篇 电气工程
    • 315 篇 控制科学与工程
    • 308 篇 生物医学工程(可授...
    • 284 篇 光学工程
    • 243 篇 电子科学与技术(可...
    • 144 篇 化学工程与技术
    • 111 篇 机械工程
    • 103 篇 仪器科学与技术
    • 102 篇 网络空间安全
    • 96 篇 安全科学与工程
    • 92 篇 动力工程及工程热...
  • 1,737 篇 理学
    • 820 篇 数学
    • 556 篇 物理学
    • 476 篇 生物学
    • 313 篇 统计学(可授理学、...
    • 179 篇 化学
    • 129 篇 系统科学
    • 116 篇 地球物理学
  • 729 篇 管理学
    • 387 篇 管理科学与工程(可...
    • 370 篇 图书情报与档案管...
    • 199 篇 工商管理
  • 307 篇 医学
    • 271 篇 临床医学
    • 231 篇 基础医学(可授医学...
    • 138 篇 公共卫生与预防医...
    • 128 篇 药学(可授医学、理...
  • 118 篇 法学
    • 105 篇 社会学
  • 65 篇 经济学
  • 65 篇 农学
  • 54 篇 教育学
  • 15 篇 文学
  • 5 篇 军事学
  • 3 篇 艺术学

主题

  • 136 篇 deep learning
  • 130 篇 accuracy
  • 122 篇 machine learning
  • 101 篇 training
  • 97 篇 feature extracti...
  • 81 篇 real-time system...
  • 77 篇 computational mo...
  • 77 篇 predictive model...
  • 74 篇 semantics
  • 68 篇 data models
  • 62 篇 convolutional ne...
  • 49 篇 internet of thin...
  • 49 篇 generative adver...
  • 45 篇 image segmentati...
  • 45 篇 optimization
  • 45 篇 artificial intel...
  • 45 篇 adaptation model...
  • 44 篇 reinforcement le...
  • 41 篇 neural networks
  • 40 篇 deep neural netw...

机构

  • 179 篇 university of ch...
  • 162 篇 college of compu...
  • 81 篇 cas key lab of n...
  • 64 篇 school of comput...
  • 63 篇 cas key laborato...
  • 52 篇 institute of com...
  • 50 篇 institute of dat...
  • 48 篇 national enginee...
  • 44 篇 school of comput...
  • 40 篇 nanyang technolo...
  • 40 篇 data science ins...
  • 40 篇 department of co...
  • 28 篇 college of compu...
  • 28 篇 beijing advanced...
  • 27 篇 dipartimento di ...
  • 26 篇 the oskar klein ...
  • 25 篇 institute of hig...
  • 25 篇 peng cheng labor...
  • 24 篇 national institu...
  • 24 篇 center for data ...

作者

  • 157 篇 cheng xueqi
  • 94 篇 guo jiafeng
  • 66 篇 niyato dusit
  • 43 篇 shen huawei
  • 35 篇 chen mingzhe
  • 34 篇 lan yanyan
  • 33 篇 jin xiaolong
  • 30 篇 shen linlin
  • 27 篇 e. j. siskind
  • 27 篇 r. bellazzini
  • 25 篇 j. b. thayer
  • 25 篇 p. spinelli
  • 25 篇 m. kuss
  • 24 篇 s. ciprini
  • 24 篇 pang liang
  • 23 篇 p. a. caraveo
  • 23 篇 p. f. michelson
  • 23 篇 r. rando
  • 23 篇 s. guiriec
  • 23 篇 fan yixing

语言

  • 3,621 篇 英文
  • 546 篇 其他
  • 28 篇 中文
检索条件"机构=Institute of Data Science and Computing"
4187 条 记 录,以下是3801-3810 订阅
排序:
Stochastic modified equations and dynamics of stochastic gradient algorithms I: Mathematical foundations
arXiv
收藏 引用
arXiv 2018年
作者: Li, Qianxiao Tai, Cheng Weinan, E. Institute of High Performance Computing Agency for Science Technology and Research 1 Fusionopolis Way Connexis North138632 Singapore Beijing Institute of Big Data Research Peking University Beijing100080 China Princeton University PrincetonNJ08544 United States
We develop the mathematical foundations of the stochastic modified equations (SME) framework for analyzing the dynamics of stochastic gradient algorithms, where the latter is approximated by a class of stochastic diff... 详细信息
来源: 评论
Method for the calculation of the Hamaker constants of organic materials by the Lifshitz macroscopic approach with DFT
arXiv
收藏 引用
arXiv 2019年
作者: Takagishi, Hideyuki Masuda, Takashi Shimoda, Tatsuya Maezono, Ryo Hongo, Kenta School of Materials Science JAIST Asahidai 1-1 Nomi Ishikawa923-1292 Japan School of Information Science JAIST Asahidai 1-1 Nomi Ishikawa923-1292 Japan Computational Engineering Applications Unit RIKEN 2-1 Hirosawa Wako Saitama351-0198 Research Center for Advanced Computing Infrastructure JAIST Asahidai 1-1 Nomi Ishikawa923-1292 Japan Center for Materials Research by Information Integration Research Services Division of Materials Data and Integrated System National Institute for Materials Science Tsukuba305-0047 PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi-shi Saitama322-0012 Japan
The Hamaker constants, which are coefficients providing quantitative information on intermolecular forces, were calculated for a number of different materials according to the Lifshitz theory via simple DFT calculatio... 详细信息
来源: 评论
Complete Characterization of Incorrect Orthology Assignments in Best Match Graphs
arXiv
收藏 引用
arXiv 2020年
作者: Schaller, David Geiß, Manuela Stadler, Peter F. Hellmuth, Marc Max Planck Institute for Mathematics in the Sciences Inselstraße 22 LeipzigD-04103 Germany Bioinformatics Group Department of Computer Science & Interdisciplinary Center for Bioinformatics Universität Leipzig Härtelstraße 16–18 LeipzigD-04107 Germany Software Competence Center Hagenberg GmbH Softwarepark 21 HagenbergA-4232 Austria Halle-Jena-Leipzig Competence Center for Scalable Data Services and Solutions Dresden-Leipzig Leipzig Research Center for Civilization Diseases Centre for Biotechnology and Biomedicine at Leipzig University Universität Leipzig Institute for Theoretical Chemistry University of Vienna Währingerstrasse 17 WienA-1090 Austria Facultad de Ciencias Universidad National de Colombia Sede Bogotá Colombia Santa Fe Insitute 1399 Hyde Park Rd. Santa FeNM87501 United States School of Computing University of Leeds EC Stoner Building LeedsLS2 9JT United Kingdom
Genome-scale orthology assignments are usually based on reciprocal best matches. In the absence of horizontal gene transfer (HGT), every pair of orthologs forms a reciprocal best match. Incorrect orthology assignments... 详细信息
来源: 评论
A mean-field optimal control formulation of deep learning
arXiv
收藏 引用
arXiv 2018年
作者: Weinan, E. Han, Jiequn Li, Qianxiao Princeton University PrincetonNJ08544 United States Beijing Institute of Big Data Research and Peking University Beijing100871 China Institute of High Performance Computing Agency for Science Technology and Research Connexis North 1 Fusionopolis Way Singapore138632 Singapore
Recent work linking deep neural networks and dynamical systems opened up new avenues to analyze deep learning. In particular, it is observed that new insights can be obtained by recasting deep learning as an optimal c... 详细信息
来源: 评论
Polarimetric geometric modeling for mm-VLBI observations of black holes
arXiv
收藏 引用
arXiv 2023年
作者: Roelofs, Freek Johnson, Michael D. Chael, Andrew Janssen, Michael Wielgus, Maciek Broderick, Avery E. Akiyama, Kazunori Alberdi, Antxon Alef, Walter Algaba, Juan Carlos Anantua, Richard Asada, Keiichi Azulay, Rebecca Bach, Uwe Baczko, Anne-Kathrin Ball, David Baloković, Mislav Barrett, John Bauböck, Michi Benson, Bradford A. Bintley, Dan Blackburn, Lindy Blundell, Raymond Bouman, Katherine L. Bower, Geoffrey C. Boyce, Hope Bremer, Michael Brinkerink, Christiaan D. Brissenden, Roger Britzen, Silke Broguiere, Dominique Bronzwaer, Thomas Bustamante, Sandra Byun, Do-Young Carlstrom, John E. Ceccobello, Chiara Chan, Chi-Kwan Chang, Dominic O. Chatterjee, Koushik Chatterjee, Shami Chen, Ming-Tang Chen, Yongjun Cheng, Xiaopeng Cho, Ilje Christian, Pierre Conroy, Nicholas S. Conway, John E. Cordes, James M. Crawford, Thomas M. Crew, Geoffrey B. Cruz-Osorio, Alejandro Cui, Yuzhu Dahale, Rohan Davelaar, Jordy De Laurentis, Mariafelicia Deane, Roger Dempsey, Jessica Desvignes, Gregory Dexter, Jason Dhruv, Vedant Doeleman, Sheperd S. Dougal, Sean Dzib, Sergio A. Eatough, Ralph P. Emami, Razieh Falcke, Heino Farah, Joseph Fish, Vincent L. Fomalont, Ed Ford, H. Alyson Foschi, Marianna Fraga-Encinas, Raquel Freeman, William T. Friberg, Per Fromm, Christian M. Fuentes, Antonio Galison, Peter Gammie, Charles F. García, Roberto Gentaz, Olivier Georgiev, Boris Goddi, Ciriaco Gold, Roman Gómez-Ruiz, Arturo I. Gómez, José L. Gu, Minfeng Gurwell, Mark Hada, Kazuhiro Haggard, Daryl Haworth, Kari Hecht, Michael H. Hesper, Ronald Heumann, Dirk Ho, Luis C. Ho, Paul Honma, Mareki Huang, Chih-Wei L. Huang, Lei Hughes, David H. Ikeda, Shiro Impellizzeri, C.M. Violette Inoue, Makoto Issaoun, Sara James, David J. Jannuzi, Buell T. Jeter, Britton Jiang, Wu Jiménez-Rosales, Alejandra Jorstad, Svetlana Joshi, Abhishek V. Jung, Taehyun Karami, Mansour Karuppusamy, Ramesh Kawashima, Tomohisa Keating, Garrett K. Kettenis, Mark Kim, Dong-Jin Kim, Jae-Young Kim, Jongsoo Kim, Junhan Kino, Motoki Koay, Jun Yi Kocherlakota, Prashant Kofuji, Yutaro Koch, Center for Astrophysics Harvard & Smithsonian 60 Garden Street CambridgeMA02138 United States Black Hole Initiative Harvard University 20 Garden Street CambridgeMA02138 United States Radboud University P.O. Box 9010 Nijmegen6500 GL Netherlands Black Hole Initiative Harvard University 20 Garden Street CambridgeMA02138 United States Princeton Gravity Initiative Princeton University Jadwin Hall PrincetonNJ08544 United States Max-Planck-Institut für Radioastronomie Auf dem Hügel 69 BonnD-53121 Germany Perimeter Institute for Theoretical Physics 31 Caroline Street North WaterlooONN2L 2Y5 Canada Department of Physics and Astronomy University of Waterloo 200 University Avenue West WaterlooONN2L 3G1 Canada Waterloo Centre for Astrophysics University of Waterloo WaterlooONN2L 3G1 Canada Massachusetts Institute of Technology Haystack Observatory 99 Millstone Road WestfordMA01886 United States National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka Tokyo181-8588 Japan Instituto de Astrofísica de Andalucía-CSIC Glorieta de la Astronomía s/n GranadaE-18008 Spain Department of Physics Faculty of Science Universiti Malaya Kuala Lumpur50603 Malaysia Department of Physics & Astronomy The University of Texas at San Antonio One UTSA Circle San AntonioTX78249 United States Institute of Astronomy and Astrophysics Academia Sinica 11F of Astronomy-Mathematics Building AS/NTU No. 1 Sec. 4 Roosevelt Rd. Taipei10617 Taiwan Departament d’Astronomia i Astrofísica Universitat de València C. Dr. Moliner 50 València BurjassotE-46100 Spain Observatori Astronòmic Universitat de València C. Catedrático José Beltrán 2 València PaternaE-46980 Spain Department of Space Earth and Environment Chalmers University of Technology Onsala Space Observatory OnsalaSE-43992 Sweden Steward Observatory Department of Astronomy University of Arizona 933 N. Cherry Ave. TucsonAZ85721 United States Yale Center for Astronomy & Astrophysics Yale Universit
The Event Horizon Telescope (EHT) is a millimeter very-long-baseline interferometry (VLBI) array which has imaged the apparent shadows of the supermassive black holes M87∗ and Sagittarius A∗. Polarimetric data from th... 详细信息
来源: 评论
The Future of Astronomical data Infrastructure: Meeting Report
arXiv
收藏 引用
arXiv 2023年
作者: Blanton, Michael R. Evans, Janet D. Norman, Dara O'Mullane, William Price-Whelan, Adrian Rizzi, Luca Accomazzi, Alberto Ansdell, Megan Bailey, Stephen Barrett, Paul Berukoff, Steven Bolton, Adam Borrill, Julian Cruz, Kelle Dalcanton, Julianne Desai, Vandana Dubois-Felsmann, Gregory P. Economou, Frossie Ferguson, Henry Field, Bryan Foreman-Mackey, Dan Forero-Romero, Jaime Gaffney, Niall Gillies, Kim Graham, Matthew J. Gwyn, Steven Hennawi, Joseph Hughes, Anna L.H. Jaffe, Tess Jagannathan, Preshanth Jenness, Tim Jurić, Mario Kavelaars, J.J. Kee, Kerk Kern, Jeff Kremin, Anthony Labrie, Kathleen Lacy, Mark Law, Casey Martínez-Galarza, Rafael McCully, Curtis McEnery, Julie Miller, Bryan Moriarty, Christopher Muench, August Muna, Demitri Murillo, Angela Narayan, Gautham Neill, James D. Nikutta, Robert Ojha, Roopesh Olsen, Knut O'Meara, John Rusholme, Ben Seaman, Robert Starkman, Nathaniel Still, Martin Stoehr, Felix Swinbank, John D. Teuben, Peter Toledo, Ignacio Tollerud, Erik Turk, Matthew D. Turner, James Vacca, William Vieira, Joaquin Weaver, Benjamin Weiner, Benjamin Weiss, Jason Westfall, Kyle Willman, Beth Zhao, Lily Center for Cosmology & Particle Physics New York University 726 Broadway New York10003 United States Center for Astrophysics Harvard & Smithsonian 60 Garden Street CambridgeMA02138 United States NSF's National Optical-Infrared Astronomy Research Laboratory 950 N. Cherry Ave. TucsonAZ85719 United States Rubin Observatory Project Office 950 N. Cherry Ave. TucsonAZ85719 United States Center for Computational Astrophysics Flatiron Institute 162 Fifth Ave New YorkNY10010 United States National Science Foundation 2415 Eisenhower Avenue AlexandriaVA22314 United States National Aeronautics and Space Administration Goddard Space Flight Center GreenbeltMD United States Lawrence Berkeley National Laboratory 1 Cyclotron Road BerkeleyCA94720 United States US Naval Observatory Flagstaff Station 10391 Naval Observatory Road FlagstaffAZ86001 United States City University of New York Hunter College Hunter North Building 695 Park Ave. New YorkNY10065 United States IPAC California Institute of Technology MS 100-22 PasadenaCA91125 United States Space Telescope Science Institute 3700 San Martin Drive BaltimoreMD21218 United States Office of Science U.S. Department of Energy 1000 Independence Ave. SW WashingtonDC20585 United States Universidad de los Andes Cra 1 Num. 18A - 12 Bogotá Colombia Texas Advanced Computing Center The University of Texas Austin United States TMT International Observatory United States Astronomy Department California Institute of Technology 1200 East California Blvd. PasadenaCA91125 United States National Research Council Canada 5071 West Saanich Road Victoria Canada University of California Santa BarbaraCA93106-9530 United States National Solar Observatory 3665 Discovery Drive BoulderCO80303 United States National Radio Astronomy Observstory 520 Edgemont Road CharlottesvilleVA22903 United States Department of Astronomy The DIRAC Institute University of Washington 3910 15th Avenue NE SeattleWA98195 Unite
The astronomical community is grappling with the increasing volume and complexity of data produced by modern telescopes, due to difficulties in reducing, accessing, analyzing, and combining archives of data. To addres... 详细信息
来源: 评论
Euclid preparation. Simulations and nonlinearities beyond ΛCDM. 2. Results from non-standard simulations
arXiv
收藏 引用
arXiv 2024年
作者: Rácz, G. Breton, M.-A. Fiorini, B. Le Brun, A.M.C. Winther, H.-A. Sakr, Z. Pizzuti, L. Ragagnin, A. Gayoux, T. Altamura, E. Carella, E. Pardede, K. Verza, G. Koyama, K. Baldi, M. Pourtsidou, A. Vernizzi, F. Adame, A.G. Adamek, J. Avila, S. Carbone, C. Despali, G. Giocoli, C. Hernández-Aguayo, C. Hassani, F. Kunz, M. Li, B. Rasera, Y. Yepes, G. Gonzalez-Perez, V. Corasaniti, P.-S. García-Bellido, J. Hamaus, N. Kiessling, A. Marinucci, M. Moretti, C. Mota, D.F. Piga, L. Pisani, A. Szapudi, I. Tallada-Crespí, P. Aghanim, N. Andreon, S. Baccigalupi, C. Bardelli, S. Bonino, D. Branchini, E. Brescia, M. Brinchmann, J. Camera, S. Capobianco, V. Cardone, V.F. Carretero, J. Casas, S. Castellano, M. Castignani, G. Cavuoti, S. Cimatti, A. Colodro-Conde, C. Congedo, G. Conselice, C.J. Conversi, L. Copin, Y. Courbin, F. Courtois, H.M. Da Silva, A. Degaudenzi, H. De Lucia, G. Douspis, M. Dubath, F. Duncan, C.A.J. Dupac, X. Dusini, S. Ealet, A. Farina, M. Farrens, S. Ferriol, S. Fosalba, P. Frailis, M. Franceschi, E. Fumana, M. Galeotta, S. Gillis, B. Gómez-Alvarez, P. Grazian, A. Grupp, F. Haugan, S.V.H. Holmes, W. Hormuth, F. Hornstrup, A. Ilić, S. Jahnke, K. Jhabvala, M. Joachimi, B. Keihänen, E. Kermiche, S. Kilbinger, M. Kitching, T. Kubik, B. Kurki-Suonio, H. Lilje, P.B. Lindholm, V. Lloro, I. Mainetti, G. Maiorano, E. Mansutti, O. Marggraf, O. Markovic, K. Martinelli, M. Martinet, N. Marulli, F. Massey, R. Medinaceli, E. Mei, S. Mellier, Y. Meneghetti, M. Meylan, G. Moresco, M. Moscardini, L. Niemi, S.-M. Padilla, C. Paltani, S. Pasian, F. Pedersen, K. Percival, W.J. Pettorino, V. Pires, S. Polenta, G. Poncet, M. Popa, L.A. Raison, F. Rebolo, R. Renzi, A. Rhodes, J. Riccio, G. Romelli, E. Roncarelli, M. Saglia, R. Salvignol, J.-C. Sánchez, A.G. Sapone, D. Sartoris, B. Schirmer, M. Schrabback, T. Secroun, A. Seidel, G. Serrano, S. Sirignano, C. Sirri, G. Stanco, L. Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive PasadenaCA91109 United States Department of Physics University of Helsinki P.O. Box 64 00014 Finland Campus UAB Carrer de Can Magrans s/n Barcelona08193 Spain Campus UAB Carrer de Can Magrans s/n Cerdanyola del Vallés Barcelona08193 Spain Laboratoire Univers et Théorie Observatoire de Paris Université PSL Université Paris Cité CNRS Meudon92190 France Institute of Cosmology and Gravitation University of Portsmouth PortsmouthPO1 3FX United Kingdom School of Physics and Astronomy Queen Mary University of London Mile End Road LondonE1 4NS United Kingdom Institut d’Astrophysique de Paris UMR 7095 CNRS Sorbonne Université 98 bis boulevard Arago Paris75014 France Institute of Theoretical Astrophysics University of Oslo P.O. Box 1029 Blindern Oslo0315 Norway Institut für Theoretische Physik University of Heidelberg Philosophenweg 16 Heidelberg69120 Germany Université de Toulouse CNRS UPS CNES 14 Av. Edouard Belin Toulouse31400 France Université St Joseph Faculty of Sciences Beirut Lebanon Dipartimento di Fisica "G. Occhialini" Università degli Studi di Milano Bicocca Piazza della Scienza 3 Milano20126 Italy INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna Via Piero Gobetti 93/3 Bologna40129 Italy IFPU Institute for Fundamental Physics of the Universe via Beirut 2 Trieste34151 Italy Dipartimento di Fisica e Astronomia "Augusto Righi" Alma Mater Studiorum Università di Bologna via Piero Gobetti 93/2 Bologna40129 Italy ICSC - Centro Nazionale di Ricerca in High Performance Computing Big Data e Quantum Computing Via Magnanelli 2 Bologna Italy Jodrell Bank Centre for Astrophysics Department of Physics and Astronomy University of Manchester Oxford Road ManchesterM13 9PL United Kingdom INAF-IASF Milano Via Alfonso Corti 12 Milano20133 Italy Dipartimento di Fisica "Aldo Pontremoli" Università degli Studi di Milano Via Celoria 16
The Euclid mission will measure cosmological parameters with unprecedented precision. To distinguish between cosmological models, it is essential to generate realistic mock observables from cosmological simulations th... 详细信息
来源: 评论
Improving individual predictions using social networks assortativity  12
Improving individual predictions using social networks assor...
收藏 引用
12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and data Visualization, WSOM 2017
作者: Mulders, Dounia De Bodt, Cyril Bjelland, Johannes Pentland, Alex Sandy Verleysen, Michel De Montjoye, Yves-Alexandre ICTEAM institute Université catholique de Louvain Belgium Telenor Research Norway MIT Media Lab Massachusetts Institute of Technology United States Data Science Institute Department of Computing Imperial College London United Kingdom
Social networks are known to be assortative with respect to many attributes, such as age, weight, wealth, level of education, ethnicity and gender. This can be explained by influences and homophilies. Independently of... 详细信息
来源: 评论
Learning from learning machines: A new generation of AI technology to meet the needs of science
arXiv
收藏 引用
arXiv 2021年
作者: Pion-Tonachini, Luca Bouchard, Kristofer Martin, Hector Garcia Peisert, Sean Holtz, W. Bradley Aswani, Anil Dwivedi, Dipankar Wainwright, Haruko Pilania, Ghanshyam Nachman, Benjamin Marrone, Babetta L. Falco, Nicola Prabhat Arnold, Daniel Wolf-Yadlin, Alejandro Powers, Sarah Climer, Sharlee Jackson, Quinn Carlson, Ty Sohn, Michael Zwart, Petrus Kumar, Neeraj Justice, Amy Tomlin, Claire Jacobson, Daniel Micklem, Gos Gkoutos, Georgios V. Bickel, Peter J. Cazier, Jean-Baptiste Müller, Juliane Webb-Robertson, Bobbie-Jo Stevens, Rick Anderson, Mark Kreutz-Delgado, Ken Mahoney, Michael W. Brown, James B. Pattern Computer Inc. Friday HarborWA98250 United States Biosciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computational Research Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Helen Wils Neuroscience Institute Redwood Center for Theoretical Neuroscience Uc Berkeley BerkeleyCA94720 United States Doe Agile BioFoundry Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Joint BioEnergy Institute Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Bcam Basque Center for Applied Mathematics Bilbao48009 Spain Computer Science University of California Davis DavisCA95616 United States Cenic La MiradaCA90638 United States Health Informatics University of California Davis School of Medicine SacramentoCA95817 United States Berkeley Institute for Data Science University of California Berkeley BerkeleyCA94720 United States Industrial Engineering and Operations Research University of California Berkeley BerkeleyCA94720 United States Environmental & Earth Sciences Area Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Nuclear Engineering University of California Berkeley BerkeleyCA94720 United States Materials Science and Technology Division Los Alamos National Laboratory Los AlamosNM87545 United States Physics Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Bioscience Division Los Alamos National Laboratory Los AlamosNM87545 United States Earth and Environmental Sciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Energy Technologies Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computing and Computational Sciences Oak Ridge National Laboratory Oak RidgeTN37831 United States Industrial & Systems Engineering The University of Tennessee KnoxvilleTN37996 United States Department of Computer Science University of Missouri-Saint Louis St. LouisMO63121 United
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery. The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patte... 详细信息
来源: 评论
The development of data science: implications for education, employment, research, and the data revolution for sustainable development
收藏 引用
Big data and Cognitive computing 2018年 第2期2卷 1-16页
作者: Murtagh, Fionn Devlin, Keith Centre of Mathematics and Data Science School of Computing and Engineering University of Huddersfield HuddersfieldHD1 3DH United Kingdom H-STAR Institute Stanford University Ventura Hall 220 Panama Street StanfordCA94305-4101 United States
In data science, we are concerned with the integration of relevant sciences in observed and empirical contexts. This results in the unification of analytical methodologies, and of observed and empirical data contexts.... 详细信息
来源: 评论